分析 (1)设P(x1,y1),Q(x2,y2),根据直线的斜率公式建立斜率过程结合向量关系的坐标公式进行证明即可.
(2)求出椭圆和双曲线的焦点坐标,结合PF1∥QF2,得到坐标之间的关系,利用直线的斜率公式进行化简求解即可.
解答 解:(1)设P(x1,y1),Q(x2,y2),则
k1+k2+k3+k4=$\frac{{y}_{1}}{{x}_{1}+2}$+$\frac{{y}_{1}}{{x}_{1}-2}$+$\frac{{y}_{2}}{{x}_{2}+2}$+$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{2{y}_{1}{y}_{1}}{{{x}_{1}}^{2}-4}$+$\frac{2{x}_{2}{y}_{2}}{{{x}_{2}}^{2}-4}$ …(2分)
又x12-4=-4y12,x22-4=-4y22,
所以k1+k2+k3+k4=$\frac{2{x}_{1}{y}_{2}}{-4{y}_{1}^{2}}$+$\frac{2{x}_{2}{y}_{2}}{4{y}_{2}^{2}}$=$\frac{{x}_{2}}{2{y}_{2}}-\frac{{x}_{1}}{2{y}_{1}}$=$\frac{{y}_{1}{x}_{2}-{y}_{2}{x}_{1}}{2{y}_{1}{y}_{2}}$…(4分)
由k1+k2+k3+k4=0得y1x2-y2x1=0
即$\overrightarrow{OP}∥\overrightarrow{OQ}$,
所以O、P、Q三点共线 …(6分)
(2)由题意得F1($\sqrt{3}$,0),F2($\sqrt{5}$,0),由PF1∥QF2知|OP|:|OQ|=$\sqrt{3}:\sqrt{5}$,
因为O、P、Q三点共线,所以$\frac{{x}_{1}^{2}}{{x}_{2}^{2}}=\frac{3}{5}$ …①…(7分)
设直线PQ的斜率为k,则$\left\{\begin{array}{l}{\frac{{x}_{1}^{2}}{4}+{k}^{2}{{x}_{1}}^{2}=1}\\{\frac{{x}_{2}^{2}}{4}-{k}^{2}{{x}_{2}}^{2}=1}\end{array}\right.$得($\frac{1}{4}$+k2)x12=($\frac{1}{4}$-k2)x22,…②
由①②得k2=$\frac{1}{16}$ …(10分),
又k1k2=$\frac{{y}_{1}^{2}}{{x}_{1}^{2}-4}$=$\frac{{y}_{1}^{2}}{-4{y}_{1}^{2}}$=-$\frac{1}{4}$,k3k4=$\frac{{y}_{2}^{2}}{{x}_{2}^{2}-4}$=$\frac{{y}_{2}^{2}}{4{y}_{2}^{2}}$=$\frac{1}{4}$ …(12分)
从而k12+k22+k32+k42=(k1+k2)2+(k3+k4)2-2(k1k2+k3k4)=2(k1+k2)2=2×($\frac{2{x}_{2}{y}_{2}}{-4{y}_{1}^{2}}$)2=$\frac{1}{2}×(\frac{{x}_{1}}{{y}_{1}})^{2}=\frac{1}{2}×\frac{1}{{k}^{2}}$=8…(13分)
点评 本题主要考查圆锥曲线的综合问题,利用直线的斜率公式以及向量和直线平行的公式进行转化是解决本题的关键.考查学生的计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 零件的个数x(个) | 2 | 3 | 4 | 5 |
| 加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com