精英家教网 > 高中数学 > 题目详情
1.如图1,平面五边形ABCDE中,AB∥CE,且$AE=2,∠AEC={60°},CD=ED=\sqrt{7}$,$cos∠EDC=\frac{5}{7}$.将△CDE沿CE折起,使点D到P的位置如图2,且$AP=\sqrt{3}$,得到四棱锥P-ABCE.

(1)求证:AP⊥平面ABCE;
(2)记平面PAB与平面PCE相交于直线l,求证:AB∥l.

分析 (1)在△CDE中,由已知结合余弦定理得CE.连接AC,可得AC=2.在△PAE中,由PA2+AE2=PE2,得AP⊥AE.同理,AP⊥AC,然后利用线面垂直的判定可得AP⊥平面ABCE;
(2)由AB∥CE,且CE?平面PCE,AB?平面PCE,可得AB∥平面PCE,又平面PAB∩平面PCE=l,结合面面平行的性质可得AB∥l.

解答 证明:(1)在△CDE中,∵$CD=ED=\sqrt{7}$,$cos∠EDC=\frac{5}{7}$,
∴由余弦定理得CE=$\sqrt{(\sqrt{7})^{2}+(\sqrt{7})^{2}-2×\sqrt{7}×\sqrt{7}×\frac{5}{7}}$=2.
连接AC,∵AE=2,∠AEC=60°,∴AC=2.
又∵$AP=\sqrt{3}$,∴在△PAE中,PA2+AE2=PE2
即AP⊥AE.
同理,AP⊥AC,
∵AC?平面ABCE,AE?平面ABCE,
且AC∩AE=A,
故AP⊥平面ABCE;
(2)∵AB∥CE,且CE?平面PCE,AB?平面PCE,
∴AB∥平面PCE,
又平面PAB∩平面PCE=l,
∴AB∥l.

点评 本题考查线面垂直的判定,面面平行的性质,考查空间想象能力和思维能力,关键是明确折叠问题折叠前后的变量与不变量,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.《最强大脑》是江苏卫视推出国内首档大型科学类真人秀电视节目,该节目集结了国内外最顶尖的脑力高手,堪称脑力界的奥林匹克,某校为了增强学生的记忆力和辨识力也组织了一场类似《最强大脑》的PK赛,A、B两队各由4名选手组成,每局两队各派一名选手PK,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分,假设每局比赛两队选手获胜的概率均为0.5,且各局比赛结果相互独立.
(1)求比赛结束时A队的得分高于B队的得分的概率;
(2)求比赛结束时B队得分X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.图所示的阴影部分由坐标轴、直线x=1及曲线y=ex-lne围成,现向矩形区域OABC内随机投掷一点,则该点落在非阴影区域的概率是(  )
A.$\frac{1}{e}$B.$\frac{1}{e-1}$C.1-$\frac{1}{e}$D.1-$\frac{1}{e-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|1<x2<4},B={x|x-1≥0},则A∩B=(  )
A.(1,2)B.[1,2)C.(-1,2)D.[-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a-b)(sinA+sinB)=(c-b)sinC,若$a=\sqrt{3}$,则b2+c2的取值范围是(  )
A.(5,6]B.(3,5)C.(3,6]D.[5,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f′(1)+f(3)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,$AB=\sqrt{7}$,BC=3,∠C=60°,则AC=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=axg(x)(a>0,且a≠1),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,若数列 {$\frac{f(n)}{g(n)}$}的前n项和大于62,则n的最小值(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\frac{3}{2}{x^2}-2ax({a>0})$与g(x)=a2lnx+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为(  )
A.$\frac{1}{{2{e^2}}}$B.$\frac{1}{2}{e^2}$C.$\frac{1}{e}$D.$-\frac{3}{{2{e^2}}}$

查看答案和解析>>

同步练习册答案