精英家教网 > 高中数学 > 题目详情
16.锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a-b)(sinA+sinB)=(c-b)sinC,若$a=\sqrt{3}$,则b2+c2的取值范围是(  )
A.(5,6]B.(3,5)C.(3,6]D.[5,6]

分析 由已知利用正弦定理可得b2+c2-a2=bc.再利用余弦定理可得cosA,进而可求A,利用正弦定理,三角函数恒等变换的应用化简可得b2+c2=4+2sin(2B-$\frac{π}{6}$),利用B的范围,可求2B-$\frac{π}{6}$的范围,利用正弦函数的图象和性质可求其范围.

解答 解:∵(a-b)(sinA+sinB)=(c-b)sinC,由正弦定理可得:(a-b)(a+b)=(c-b)c,化为b2+c2-a2=bc.
由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴A为锐角,可得A=$\frac{π}{3}$,
∵$a=\sqrt{3}$,
∴由正弦定理可得:$\frac{b}{sinB}=\frac{c}{sin(\frac{2π}{3}-B)}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2$,
∴可得:b2+c2=(2sinB)2+[2sin($\frac{2π}{3}$-B)]2=3+2sin2B+$\sqrt{3}$sin2B=4+2sin(2B-$\frac{π}{6}$),
∵B∈($\frac{π}{6}$,$\frac{π}{2}$),可得:2B-$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(2B-$\frac{π}{6}$)∈($\frac{1}{2}$,1],可得:b2+c2=4+2sin(2B-$\frac{π}{6}$)∈(5,6].
故选:A.

点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.二战中盟军为了知道德国“虎式”重型坦克的数量,采用了两种方法,一种是传统的情报窃取,一种是用统计学的方法进行估计,统计学的方法最后被证实比传统的情报收集更精确,德国人在生产坦克时把坦克从1开始进行了连续编号,在战争期间盟军把缴获的“虎式”坦克的编号进行记录,并计算出这些编号的平均值为675.5,假设缴获的坦克代表了所有坦克的一个随机样本,则利用你所学过的统计知识估计德国共制造“虎式”坦克大约有(  )
A.1050辆B.1350辆C.1650辆D.1950辆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.同时具有性质:①图象的相邻两条对称轴间的距离是$\frac{π}{2}$;②在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函数的一个函数为(  )
A.y=sin($\frac{x}{2}$+$\frac{π}{6}$)B.y=cos(2x+$\frac{π}{3}$)C.y=sin(2x-$\frac{π}{6}$)D.y=cos($\frac{x}{2}$-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|3x+3<1},B={x|x2-4x-12>0},则(∁RA)∩B=(  )
A.[-3,-2)B.(-∞,-3]C.[-3,-2)∪(6,+∞)D.(-3,-2)∪(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y≥-1}\\{x+y≤4}\\{y≥2}\end{array}}\right.$,则目标函数z=x+2y的最大值为(  )
A.5B.6C.$\frac{13}{2}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图1,平面五边形ABCDE中,AB∥CE,且$AE=2,∠AEC={60°},CD=ED=\sqrt{7}$,$cos∠EDC=\frac{5}{7}$.将△CDE沿CE折起,使点D到P的位置如图2,且$AP=\sqrt{3}$,得到四棱锥P-ABCE.

(1)求证:AP⊥平面ABCE;
(2)记平面PAB与平面PCE相交于直线l,求证:AB∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在棱长为2的正方体ABCD-A1B1C1D1中,E为A1B1的中点,则异面直线D1E和BC1间的距离是(  )
A.$\frac{2\sqrt{6}}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a=25,b=25,则a,b的等比中项为±25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知长方体ABCD-A1B1C1D1的底面ABCD是边长为4的正方形,高AA1=4$\sqrt{2}$,P为CC1的中点.
(1)求证:BD⊥A1P;
(2)求二面角C-PD-B的余弦值.

查看答案和解析>>

同步练习册答案