| A. | (5,6] | B. | (3,5) | C. | (3,6] | D. | [5,6] |
分析 由已知利用正弦定理可得b2+c2-a2=bc.再利用余弦定理可得cosA,进而可求A,利用正弦定理,三角函数恒等变换的应用化简可得b2+c2=4+2sin(2B-$\frac{π}{6}$),利用B的范围,可求2B-$\frac{π}{6}$的范围,利用正弦函数的图象和性质可求其范围.
解答 解:∵(a-b)(sinA+sinB)=(c-b)sinC,由正弦定理可得:(a-b)(a+b)=(c-b)c,化为b2+c2-a2=bc.
由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴A为锐角,可得A=$\frac{π}{3}$,
∵$a=\sqrt{3}$,
∴由正弦定理可得:$\frac{b}{sinB}=\frac{c}{sin(\frac{2π}{3}-B)}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}=2$,
∴可得:b2+c2=(2sinB)2+[2sin($\frac{2π}{3}$-B)]2=3+2sin2B+$\sqrt{3}$sin2B=4+2sin(2B-$\frac{π}{6}$),
∵B∈($\frac{π}{6}$,$\frac{π}{2}$),可得:2B-$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(2B-$\frac{π}{6}$)∈($\frac{1}{2}$,1],可得:b2+c2=4+2sin(2B-$\frac{π}{6}$)∈(5,6].
故选:A.
点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1050辆 | B. | 1350辆 | C. | 1650辆 | D. | 1950辆 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin($\frac{x}{2}$+$\frac{π}{6}$) | B. | y=cos(2x+$\frac{π}{3}$) | C. | y=sin(2x-$\frac{π}{6}$) | D. | y=cos($\frac{x}{2}$-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,-2) | B. | (-∞,-3] | C. | [-3,-2)∪(6,+∞) | D. | (-3,-2)∪(6,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | $\frac{13}{2}$ | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{6}}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com