精英家教网 > 高中数学 > 题目详情
19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,离心率为$\frac{\sqrt{2}}{2}$,点M在椭圆上,且MF2⊥x轴,过F2作与OM垂直的弦CD,若△F1CD的面积为20$\sqrt{3}$,求椭圆方程.

分析 $e=\frac{c}{a}=\frac{\sqrt{2}}{2}$,可得a=$\sqrt{2}$c=$\sqrt{2}$b.因此椭圆的方程化为:x2+2y2=2c2.把x=c代入椭圆方程解得y,不妨取M$(c,\frac{\sqrt{2}c}{2})$,由于CD⊥OM,可得kCD=-$\sqrt{2}$.直线CD的方程为:y=-$\sqrt{2}$(x-c).设C(x1,y1),D(x2,y2).与椭圆方程联立化为:5x2-8cx+2c2=0,利用根与系数的关系可得|CD|=$\sqrt{3[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$.求出点F1(-c,0)到直线CD的距离d,利用${S}_{△{F}_{1}CD}$=$\frac{1}{2}$d|CD|=20$\sqrt{3}$,解出即可得出.

解答 解:∵$e=\frac{c}{a}=\frac{\sqrt{2}}{2}$,∴a=$\sqrt{2}$c=$\sqrt{2}$b.因此椭圆的方程化为:x2+2y2=2c2
把x=c代入椭圆方程可得:c2+2y2=2c2,解得y=±$\frac{c}{\sqrt{2}}$,不妨取M$(c,\frac{\sqrt{2}c}{2})$,
∴kOM=$\frac{\sqrt{2}}{2}$,∴kCD=-$\sqrt{2}$.
∴直线CD的方程为:y=-$\sqrt{2}$(x-c).设C(x1,y1),D(x2,y2).
联立$\left\{\begin{array}{l}{y=-\sqrt{2}(x-c)}\\{{x}^{2}+2{y}^{2}=2{c}^{2}}\end{array}\right.$,化为:5x2-8cx+2c2=0,
∴x1+x2=$\frac{8c}{5}$,x1•x2=$\frac{2{c}^{2}}{5}$,
∴|CD|=$\sqrt{3[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{3(\frac{64{c}^{2}}{25}-4×\frac{2{c}^{2}}{5})}$=$\frac{6\sqrt{2}c}{5}$.
点F1(-c,0)到直线CD的距离d=$\frac{|\sqrt{2}c+\sqrt{2}c|}{\sqrt{3}}$=$\frac{2\sqrt{6}c}{3}$,
∴${S}_{△{F}_{1}CD}$=$\frac{1}{2}$d|CD|=$\frac{1}{2}$×$\frac{2\sqrt{6}c}{3}$×$\frac{6\sqrt{2}c}{5}$=20$\sqrt{3}$,
解得c2=150.
∴a2=300,b2=150.
∴椭圆的标准方程为:$\frac{{x}^{2}}{300}$+$\frac{{y}^{2}}{150}$=1.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次的根与系数的关系、弦长公式、点到直线的距离公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列关于命题的说法正确的是(  )
A.命题“若x2=1则x=1”的否命题为“若x2=1,则x≠1”
B.命题“幂函数f(x)=(m2-m-1)xm在(0,+∞)上为增函数,则m=-1”为真命题
C.命题“若x=y则sinx=siny”的逆否命题为真命题
D.命题“?x0∈R,x02+x0+1<0”的否定是“?x∈R,x2+x+1>0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知菱形的一个内角是60°,边长为a,沿菱形较短的对角线折成大小为60°的二面角,则菱形中含60°角的两个顶点间的距离为$\frac{\sqrt{3}}{2}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,$\overrightarrow a$⊥$\overrightarrow b$,则|$\overrightarrow a$-2$\overrightarrow b$|=$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=xex,f'(x)是函数f(x)的导函数,则f'(2)=3e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,若曲线y=f(x)在点(1,f(1))处的切线垂直于直线x-3y=0,则切线方程为3x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列命题
(1)对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1>0;
(2)m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
(3)已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为$\widehat{y}$=1.23x+0.08;
(4)若函数f(x)是定义在R上的奇函数,且f(x+4)=f(x),则f(2016)=0.
其中真命题的序号是(3)(4).(把所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图为指数函数y=ax,y=bx,y=cx的图象,则a,b,c,的大小关系是(  )
A.a>b>cB.b>c>aC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知极坐标系的极点O在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的参数方程为:$\left\{{\begin{array}{l}{x=1+2mt}\\{y=2t\;\;\;\;\;\;\;}\end{array}}\right.$(其中t为参数),曲线C的极坐标方程为:ρ=4cosθ,
(1)写出C的直角坐标方程,并指出C是什么曲线;
(2)设直线l与曲线C相交于P、Q两点,求△OPQ面积的最大值.

查看答案和解析>>

同步练习册答案