精英家教网 > 高中数学 > 题目详情
16.已知数列{an}中,a1=3,a2=5,其前n项和为Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3,n∈N*)
(Ⅰ)试求数列{an}的通项公式
(Ⅱ)令bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是数列{bn}的前n项和.证明:对任意给定的m∈(0,$\frac{1}{6}$),均存在n0∈N*,使得当n≥n0时,Tn>m恒成立.

分析 (Ⅰ)由题意可知Sn-Sn-1=Sn-1-Sn-2+2n-1,即an-an-1=2n-1,n≥3,采用“累加法”即可求得数列{an}的通项公式;
(Ⅱ)由(Ⅰ)可知,bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$=$\frac{{2}^{n-1}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{2}$($\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$),采用“裂项法”即可求得数列{bn}的前n项和Tn,由函数的单调性可知,Tn随着n的增大而增大,分离参数n>log2($\frac{3}{1-6m}$-1)-1,分类log2($\frac{3}{1-6m}$-1)-1<1及log2($\frac{3}{1-6m}$-1)-1≥1时,求得m的取值范围,求得n0的值,即可证明存在n0∈N*,使得当n≥n0时,Tn>m恒成立.

解答 解:(Ⅰ)由Sn+Sn-2=2Sn-1+2n-1(n≥3,n∈N*),整理得:Sn-Sn-1=Sn-1-Sn-2+2n-1
∴an=an-1=2n-1,即an-an-1=2n-1,n≥3,
∵a2-a1=2,
a3-a2=4,
a4-a3=23

an-an-1=2n-1
将上式累加整理得:an-a1=2+4+23+…+2n-1
∴an=$\frac{2(1-{2}^{n-1})}{1-2}$+3=2n+1,
数列{an}的通项公式an=2n+1;
证明:(Ⅱ)bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$=$\frac{{2}^{n-1}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{2}$($\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$),
∴数列{bn}的前n项和Tn=b1+b2+b3+…+bn
=$\frac{1}{2}$[($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{9}$)+…+($\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$)],
=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{{2}^{n+1}+1}$),
Tn+1-Tn=$\frac{{2}^{n}}{({2}^{n+1}+1)({2}^{n+2}+1)}$>0,
∴Tn随着n的增大而增大,
若Tn>m,则$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{{2}^{n+1}+1}$)>m,化简整理得:$\frac{1-6m}{3}$>$\frac{1}{{2}^{n+1}+1}$,
∵m∈(0,$\frac{1}{6}$),
∴1-6m>0,
∴2n+1>$\frac{3}{1-6m}$-1,
n>log2($\frac{3}{1-6m}$-1)-1,
当log2($\frac{3}{1-6m}$-1)-1<1时,即0<m<$\frac{1}{15}$,取n0=1,
当log2($\frac{3}{1-6m}$-1)-1≥1时,解得:$\frac{1}{15}$≤m<$\frac{1}{6}$,记log2($\frac{3}{1-6m}$-1)-1的整数部分为p,
取n0=p+1即可,
综上可知,对任意m∈(0,$\frac{1}{6}$),均存在n0∈N*,使得当n≥n0时,Tn>m恒成立.

点评 本题考查数列通项公式的求法,考查“累加法”及“裂项法”的应用,考查数列与不等式的综合应用,考查计算能力,转化思想,分类讨论,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.函数f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,若f(x)=12,则x=-2或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow a$=(1,0),$\overrightarrow b$=(2,1),则|${\overrightarrow a$+3$\overrightarrow b}$|=$\sqrt{58}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.非空集合G关于运算⊕满足:
(1)对任意a,b∈G,都有a+b∈G;
(2)存在e∈G使得对于一切a∈G都有a⊕e=e⊕a=a,
则称G是关于运算⊕的融洽集,
现有下列集合与运算:
①G是非负整数集,⊕:实数的加法;
②G是偶数集,⊕:实数的乘法;
③G是所有二次三项式构成的集合,⊕:多项式的乘法;
④G={x|x=a+b$\sqrt{2}$,a,b∈Q},⊕:实数的乘法;
其中属于融洽集的是①④(请填写编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式(x+5)(3-2x)≤6的解集是(  )
A.{x|x≤-1或x$≥\frac{9}{2}$}B.{x|-1≤x$≤\frac{9}{2}$}C.{x|x$≤-\frac{9}{2}$或x≥-1}D.{x|$-\frac{9}{2}≤$ x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n?γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.可以填入的条件有(  )
A.①或③B.①或②C.②或③D.①或②或③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某林场今年造林10000亩,计划以后每一年比前一年多造林10%,那么从明年算起第3年内将造林13310亩.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知不等式ax2+bx+c>0的解集为{x|-$\frac{1}{3}$<x<2},则cx2+bx+a<0的解集为(-3,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.复数$z=\frac{2}{-1-i}(i$为虚数单位),则在复平面内对应的点的坐标为(-1,1).

查看答案和解析>>

同步练习册答案