精英家教网 > 高中数学 > 题目详情
6.函数f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,若f(x)=12,则x=-2或2.

分析 ∴当x≥0时,x(x+4)=12;当x<0时,x(x-4)=12.由此能求出结果.

解答 解:∵f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,f(x)=12,
∴当x≥0时,x(x+4)=12,解得x=2或x=-6(舍);
当x<0时,x(x-4)=12,解得x=-2或x=6(舍).
∴x=2或x=-2.
故答案为:-2或2.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在斜△ABC中,角A,B,C所对的边长分别为a,b,c,A=$\frac{π}{4}$,sinA+sin(B-C)=2$\sqrt{2}$sin2C,且△ABC的面积为1,则a的值为(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若双曲线的标准方程为$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1,则它的渐近线方程和离心率分别是(  )
A.y=±$\frac{4}{3}$x,e=$\frac{5}{3}$B.y=±$\frac{4}{3}$x,e=$\frac{5}{4}$C.y=±$\frac{3}{4}$x,e=$\frac{5}{3}$D.y=±$\frac{3}{4}$x,e=$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列各式的值:
(I)0.064${\;}^{{-_{\;}}\frac{1}{3}}}$-(-$\frac{4}{5}}$)0+0.01${\;}^{\frac{1}{2}}}$;
(II)2lg5+lg4+ln$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=($\frac{3}{π}$)${\;}^{{x^2}+2x-3}}$的递减区间为  (  )
A.(1,+∞)B.(-∞,1)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=a+$\frac{1}{{{4^x}+1}}$为定义在R上的奇函数.
(1)求a的值;       
(2)判断函数f(x)在(-∞,+∞)的单调性并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式$\frac{4}{x-1}$<x-1的解集是(-1,1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:
每件A产品每件B产品
研制成本、搭载试验费用之和(万元)2030
产品重量(千克)105
预计收益(万元)8060
已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=3,a2=5,其前n项和为Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3,n∈N*)
(Ⅰ)试求数列{an}的通项公式
(Ⅱ)令bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是数列{bn}的前n项和.证明:对任意给定的m∈(0,$\frac{1}{6}$),均存在n0∈N*,使得当n≥n0时,Tn>m恒成立.

查看答案和解析>>

同步练习册答案