分析 利用同角三角函数的基本关系式求出相关的三角函数值,然后利用两角和的余弦函数求解所求角的值.
解答 解:x,y都是锐角,且sinx=$\frac{{\sqrt{5}}}{5},tany=\frac{1}{3}$,
可得cosx=$\frac{2\sqrt{5}}{5}$,siny=$\sqrt{\frac{{tan}^{2}y}{1+{tan}^{2}y}}$=$\frac{\sqrt{10}}{10}$,cosy=$\frac{3\sqrt{10}}{10}$.
cos(x+y)=cosxcosy-sinxsiny=$\frac{2\sqrt{5}}{5}×\frac{3\sqrt{10}}{10}-\frac{\sqrt{5}}{5}×\frac{\sqrt{10}}{10}$=$\frac{\sqrt{50}}{10}$=$\frac{\sqrt{2}}{2}$,
∴x+y=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.
点评 本题考查两角和与差的三角函数同角三角函数的基本关系式的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=n-2 | B. | an=n | C. | an=n(n-1) | D. | an=2n-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①② | C. | ②③ | D. | ①②③ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com