分析 (1)等比数列{an}满足6Sn=3n+1+a(n∈N+),n=1时,6a1=9+a;n≥2时,6an=6(Sn-Sn-1),可得an=3n-1,n=1时也成立,于是1×6=9+a,解得a.
(2)由(1)代入可得bn=(1+3n)$lo{g}_{3}{(3}^{2n-2}•{3}^{n})$=(3n+1)(3n-2),因此$\frac{1}{{b}_{n}}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$.利用“裂项求和”方法即可得出.
解答 解:(1)∵等比数列{an}满足6Sn=3n+1+a(n∈N+),
n=1时,6a1=9+a;
n≥2时,6an=6(Sn-Sn-1)=3n+1+a-(3n+a)=2×3n.
∴an=3n-1,n=1时也成立,∴1×6=9+a,解得a=-3.
∴an=3n-1.
(2)bn=(1-an)log3(an2•an+1)=(1+3n)$lo{g}_{3}{(3}^{2n-2}•{3}^{n})$=(3n+1)(3n-2),
∴$\frac{1}{{b}_{n}}$=$\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$.
$\{\frac{1}{{b}_{n}}\}$的前n项和为Tn=$\frac{1}{3}[(1-\frac{1}{4})+(\frac{1}{4}-\frac{1}{7})$+…+$(\frac{1}{3n-2}-\frac{1}{3n+1})]$
=$\frac{1}{3}(1-\frac{1}{3n+1})$=$\frac{n}{3n+1}$.
点评 本题考查了等比数列的定义通项公式、数列递推关系、对数运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=($\sqrt{x}$)2 | B. | f(x)=$\frac{{x}^{2}}{x}$ | C. | y=|x| | D. | y=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0>0,x02≤x0 | B. | ?x∈R,3x>0 | ||
| C. | ?x0∈R,sinx0+cosx0=2 | D. | ?x0∈R,lgx0=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com