4£®Ä³Í¬Ñ§ÔÚÑо¿º¯Êýf£¨x£©=$\frac{4}{|x|+2}$-1£¨x¡ÊR£©Ê±£¬µÃ³öÁËÏÂÃæ4¸ö½áÂÛ£º¢ÙµÈʽf£¨-x£©=f£¨x£©ÔÚx¡ÊRʱºã³ÉÁ¢£»¢Úº¯Êýf£¨x£©ÔÚx¡ÊRÉϵÄÖµÓòΪ£¨-1£¬1]£»¢ÛÇúÏßy=f£¨x£©Óëg£¨x£©=2x-2½öÓÐÒ»¸ö¹«¹²µã£»¢ÜÈôf£¨x£©=$\frac{4}{|x|+2}$-1ÔÚÇø¼ä[a£¬b]£¨a£¬bΪÕûÊý£©ÉϵÄÖµÓòÊÇ[0£¬1]£¬ÔòÂú×ãÌõ¼þµÄÕûÊýÊý¶Ô£¨a£¬b£©¹²ÓÐ5¶Ô£®ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÓТ٢ڢܣ¨Ç뽫ÄãÈÏΪÕýÈ·µÄ½áÂÛµÄÐòºÅ¶¼ÌîÉÏ£©£®

·ÖÎö ¿ÉÒÔÏÈÑо¿º¯ÊýµÄÆæÅ¼ÐÔ£¬È»ºó×ö³öº¯ÊýµÄͼÏ󣬾ݴËÇó½â£®

½â´ð ½â£ºº¯Êýf£¨x£©=$\frac{4}{|x|+2}$-1Ò×Öªº¯ÊýµÄ¶¨ÒåÓòΪR£¬ÇÒf£¨-x£©=f£¨x£©£¬¹Êº¯ÊýΪżº¯Êý£®¹Ê¢ÙÕýÈ·£»
µ±x£¾0ʱ£¬º¯Êýf£¨x£©=$\frac{4}{|x|+2}$-1=$\frac{4}{x+2}-1$£¬¸Ãº¯ÊýÔÚ£¨0£¬+¡Þ£©Éϼõº¯Êý£¬ÇÒx=0ʱ£¬f£¨x£©=1£»µ±x¡ú+¡Þʱ£¬f£¨x£©¡ú-1£®º¯ÊýµÄÖµÓòΪ£º£¨-1£¬1]£¬ËùÒÔ¢ÚÕýÈ·£»
½áºÏÆæÅ¼ÐÔ£¬×÷³öf£¨x£©µÄͼÏóÈçÏ£º
Ò×Öªº¯ÊýµÄÖµÓòÊÇ£¨-1£¬1£©£¬¹Ê¢ÚÕýÈ·£»
ÇúÏßy=f£¨x£©Óëg£¨x£©=2x-2£¬½áºÏº¯ÊýµÄͼÏ󣬿ÉÖªx=0ʱ£¬g£¨0£©=$\frac{1}{4}$£¬½öÓÐÒ»¸ö¹«¹²µã²»ÕýÈ·£¬ËùÒÔ¢Û²»ÕýÈ·£»
Èôf£¨x£©=$\frac{4}{|x|+2}$-1ÔÚÇø¼ä[a£¬b]£¨a£¬bΪÕûÊý£©ÉϵÄÖµÓòÊÇ[0£¬1]£¬ÔòÂú×ãÌõ¼þµÄÕûÊýÊý¶Ô£¨a£¬b£©¹²ÓÐ5¶Ô£®·Ö±ðΪ£¨-2£¬0£©£¬£¨-2£¬1£©£¬£¨-2£¬2£©£¬£¨-1£¬2£©£¬£¨0£¬2£©ËùÒÔ¢ÜÕýÈ·£®
¹ÊÕýÈ·µÄÃüÌâÊǢ٢ڢܣ®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄÐÔÖÊ£®Ò»°ãÏÈÑо¿¶¨ÒåÓò£¬È»ºóÅжϺ¯ÊýµÄÆæÅ¼ÐÔ¡¢µ¥µ÷ÐÔµÈÐÔÖÊ×÷ÎªÍ»ÆÆ¿Ú£¬ÓÐһЩҪ½áºÏº¯ÊýµÄͼÏó¼ÓÒÔ·ÖÎö£¬×¢ÒâÊýÐνáºÏµÄ˼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=3x-2mx2-3ln£¨x+1£©£¬ÆäÖÐm¡ÊR
£¨1£©Èôx=1ÊÇf£¨x£©µÄ¼«Öµµã£¬ÇómµÄÖµ£»
£¨2£©Èô0£¼m£¼$\frac{3}{4}$£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨3£©Èôf£¨x£©ÔÚ[0£¬+¡Þ£©ÉϵÄ×îСֵÊÇ0£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÈôÖ±Ïß3x+y+a=0°ÑÔ²x2+y2-2x-4y=0·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£¬ÔòaµÄֵΪ-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒ6Sn=3n+1+a£¨n¡ÊN+£©
£¨1£©ÇóaµÄÖµ¼°ÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=£¨1-an£©log3£¨an2•an+1£©£¬Çó$\{\frac{1}{{b}_{n}}\}$µÄǰnÏîºÍΪTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐÿ×麯ÊýÊÇͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=x0Óëf£¨x£©=1B£®f£¨x£©=$\sqrt{{x}^{2}}$-1Óëf£¨x£©=|x|-1
C£®f£¨x£©=$\frac{{x}^{2}-4}{x+2}$Óëf£¨x£©=x-2D£®f£¨x£©=$\sqrt{£¨x-1£©£¨x-2£©}$Óëf£¨x£©=$\sqrt{x-1}$$\sqrt{x-2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁк¯ÊýÖУ¬ÊǼõº¯ÊýÇÒ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©µÄÊÇ£¨¡¡¡¡£©
A£®y=log2xB£®y=$\frac{1}{x^2}$C£®y=$\frac{1}{2^x}$D£®y=$\frac{1}{{\sqrt{x}}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®º¯Êýf£¨x£©=x2-2ax+a+1ÔÚ£¨-¡Þ£¬1£©Éϵ¥µ÷µÝ¼õ£¬ÔòaµÄȡֵ·¶Î§ÊÇa¡Ý1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²×¶ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦È\\ y=sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬¹ýµãP£¨3£¬3£©µÄÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}x=3+\frac{4}{5}t\\ y=3+\frac{3}{5}t\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÔ­µã£¨0£¬0£©µ½Ö±ÏßlµÄ¾àÀ룻
£¨¢ò£©ÉèÖ±ÏßlÓëÔ²×¶ÇúÏßCÏཻÓÚA£¬BÁ½µã£¬Çó|PA|•|PB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®É躯Êýf£¨x£©=|2x+1|£®
£¨1£©½â²»µÈʽ£ºf£¨x£©¡Ýx+3£»
£¨2£©Èô²»µÈʽf£¨x£©-2|x-1|¡Ýmºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸