精英家教网 > 高中数学 > 题目详情
15.若直线3x+y+a=0把圆x2+y2-2x-4y=0分成面积相等的两部分,则a的值为-5.

分析 由题意可得可得直线过圆心,将圆心坐标(1,2)代入直线3x+y+a=0化简,即可求得a的值.

解答 解:由题意可得直线过圆心,将圆心坐标(1,2)代入直线3x+y+a=0,
可得3+2+a=0,求得:a=-5,
故答案为-5.

点评 本题主要考查直线和圆的位置关系,判断直线过圆心,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设定点A(0,1),常数m>2,动点M(x,y),设$\overrightarrow p=({x+m,y})$,$\overrightarrow q=({x-m,y})$,且$|{\overrightarrow p}|-|{\overrightarrow q}|=4$.
(1)求动点M的轨迹方程;
(2)设直线L:$y=\frac{1}{2}x-3$与点M的轨迹交于B,C两点,问是否存在实数m使得$\overrightarrow{AB}•\overrightarrow{AC}=\frac{9}{2}$?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;
(2)经过原点且倾斜角为30°的直线l与双曲线右支交于点A,且△OAF是以AF为底边的等腰三角形,求双曲线的离心率e的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知 a,b,c是两两不等的实数,点 P(b,b+c),点Q(a,c+a),则直线 PQ的倾斜角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知不等式x2-2ax+a>0(x∈R)恒成立,则不等式a2x+1<a${\;}^{{x}^{2}+2x-3}$<1的解集是(  )
A.(1,2)B.(-$\frac{1}{2}$,2)C.(-2,2)D.(-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中哪个与函数y=x相等(  )
A.y=($\sqrt{x}$)2B.f(x)=$\frac{{x}^{2}}{x}$C.y=|x|D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设Sn是等差数列{an}的前n项和,若$\frac{a_8}{a_7}=\frac{13}{5}$,则$\frac{{{S_{15}}}}{{{S_{13}}}}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某同学在研究函数f(x)=$\frac{4}{|x|+2}$-1(x∈R)时,得出了下面4个结论:①等式f(-x)=f(x)在x∈R时恒成立;②函数f(x)在x∈R上的值域为(-1,1];③曲线y=f(x)与g(x)=2x-2仅有一个公共点;④若f(x)=$\frac{4}{|x|+2}$-1在区间[a,b](a,b为整数)上的值域是[0,1],则满足条件的整数数对(a,b)共有5对.其中正确结论的序号有①②④(请将你认为正确的结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验.收集的数据如下:
零件个数x(个)1234
加工时间y(小时)2358
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(Ⅱ)现需生产20件此零件,预测需用多长时间?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x)

查看答案和解析>>

同步练习册答案