精英家教网 > 高中数学 > 题目详情
3.已知 a,b,c是两两不等的实数,点 P(b,b+c),点Q(a,c+a),则直线 PQ的倾斜角为45°.

分析 由经过两点直线的斜率公式,得PQ的斜率为-1,再根据斜率k与倾斜角α的关系,得tanα=1,结合直线倾斜角的取值范围即可得到直线PQ的倾斜角.

解答 解:∵点P(b,b+c),点Q(a,c+a),∴直线PQ的斜率为k=$\frac{a+c-b-c}{a-b}$=1
设直线的倾斜角为α,则tanα=1
∵α∈[0,π),
∴α=45°,
故答案是:45°.

点评 本题给出直角坐标系中两个定点,求它们确定直线的倾斜角.着重考查了直线的斜率公式和斜率与倾斜角的关系等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$BC=\sqrt{7},AC=3,BC•sinB=2\sqrt{3}-sinA$,则△ABC的外接圆面积为(  )
A.$\frac{4}{3}π$B.$\frac{7}{3}π$C.D.$\frac{7}{2}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=3x-2mx2-3ln(x+1),其中m∈R
(1)若x=1是f(x)的极值点,求m的值;
(2)若0<m<$\frac{3}{4}$,求f(x)的单调区间;
(3)若f(x)在[0,+∞)上的最小值是0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)满足关系式f(x)+2f(1-x)=-$\frac{3}{x}$,则f(2)的值为(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.$-\frac{5}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)=ax2+x(a≠0).
(1)当a<0时,若函数$y=\sqrt{f(x)}$定义域与值域完全相同,求a的值;
(2)当a>0时,求函数g(x)=f(x)-2x-|x-a|的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{2x-4,0≤x<4}\\{lo{g}_{2}(x-2)+2,4≤x≤6}\end{array}\right.$,若存在x1,x2∈R,当0≤x1<4≤x2≤6时,f(x1)=f(x2),则x1f(x2)的取值范围是[$\frac{21}{2}$,16).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线3x+y+a=0把圆x2+y2-2x-4y=0分成面积相等的两部分,则a的值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}的前n项和为Sn,且6Sn=3n+1+a(n∈N+
(1)求a的值及数列{an}的通项公式;
(2)设bn=(1-an)log3(an2•an+1),求$\{\frac{1}{{b}_{n}}\}$的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在直角坐标系xOy中,圆锥曲线C的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.$(θ为参数),过点P(3,3)的直线l的参数方程$\left\{\begin{array}{l}x=3+\frac{4}{5}t\\ y=3+\frac{3}{5}t\end{array}\right.$(t为参数).
(Ⅰ)求原点(0,0)到直线l的距离;
(Ⅱ)设直线l与圆锥曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案