精英家教网 > 高中数学 > 题目详情
20.下列函数中哪个与函数y=x相等(  )
A.y=($\sqrt{x}$)2B.f(x)=$\frac{{x}^{2}}{x}$C.y=|x|D.y=$\root{3}{{x}^{3}}$

分析 根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数即可.

解答 解:函数y=x的定义域为R.
对于A:y=($\sqrt{x}$)2的定义域为{x|x≥0},它们的定义域不同,∴不是同一函数;
对于B:$f(x)=\frac{{x}^{2}}{x}$的定义域为{x|x≠0},它们的定义域不同,∴不是同一函数;
对于C:y=|x|的定义域为R,但对应关系不相同,∴不是同一函数;
对于D:$y=\root{3}{{x}^{3}}=x$的定义域为R,它们的定义域相同,对应关系相同,∴是同一函数;
故选D

点评 本题考查了判断两个函数是否为同一函数的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知A,B是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点,点C在双曲线上,在△ABC中,sinA:sinB=3:1,则该双曲线的离心率的取值范围为(  )
A.$(1,\sqrt{3)}$B.$({1,\frac{{\sqrt{10}}}{2}}]$C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)满足关系式f(x)+2f(1-x)=-$\frac{3}{x}$,则f(2)的值为(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.$-\frac{5}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{2x-4,0≤x<4}\\{lo{g}_{2}(x-2)+2,4≤x≤6}\end{array}\right.$,若存在x1,x2∈R,当0≤x1<4≤x2≤6时,f(x1)=f(x2),则x1f(x2)的取值范围是[$\frac{21}{2}$,16).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线3x+y+a=0把圆x2+y2-2x-4y=0分成面积相等的两部分,则a的值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在某次物理实验中,得到一组不全相等的数据x1,x2,x3,…,xn,若a是这组数据的算术平均数,则a满足(  )
A.$\sum_{i=1}^{n}$(xi-a)最小B.$\sum_{i=1}^{n}$|xi-a|最小
C.$\sum_{i=1}^{n}$(xi-a)2最小D.$\frac{1}{n}$$\sum_{i=1}^{n}$|xi-a|最小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}的前n项和为Sn,且6Sn=3n+1+a(n∈N+
(1)求a的值及数列{an}的通项公式;
(2)设bn=(1-an)log3(an2•an+1),求$\{\frac{1}{{b}_{n}}\}$的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,是减函数且定义域为(0,+∞)的是(  )
A.y=log2xB.y=$\frac{1}{x^2}$C.y=$\frac{1}{2^x}$D.y=$\frac{1}{{\sqrt{x}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线x2=-2y的一条弦AB的中点坐标为(-1,-5),则这条弦AB所在的直线方程是(  )
A.y=x-4B.y=2x-3C.y=-x-6D.y=3x-2

查看答案和解析>>

同步练习册答案