精英家教网 > 高中数学 > 题目详情
14.已知A,B是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点,点C在双曲线上,在△ABC中,sinA:sinB=3:1,则该双曲线的离心率的取值范围为(  )
A.$(1,\sqrt{3)}$B.$({1,\frac{{\sqrt{10}}}{2}}]$C.(1,2)D.(1,2]

分析 利用正弦定理,结合双曲线的定义,得出e<2,结合e>1,即可得出结论.

解答 解:由题意,|CB|=3|CA|,
∵|CB|-|CA|=2a,
∴|CA|=a,
∵|CA|>c-a,
∴a>c-a,
∴e<2,
∵e>1,
∴1<e<2.
故选C.

点评 本题考查正弦定理,双曲线的定义与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|x2-x-6<0},B={x|x2+2x-8>0},则A∩B=(  )
A.(-2,3)B.(-4,2)C.(-4,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四面体ABCD中,O、E分别是BD、BC的中点,底面BCD是正三角形,AC=BD=2,AB=AD=$\sqrt{2}$.
(1)求异面直线AB与CD所成角的余弦值;
(2)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线y2=-x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的值;       
(2)若△OAB的面积等于$\frac{5}{4}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设定点A(0,1),常数m>2,动点M(x,y),设$\overrightarrow p=({x+m,y})$,$\overrightarrow q=({x-m,y})$,且$|{\overrightarrow p}|-|{\overrightarrow q}|=4$.
(1)求动点M的轨迹方程;
(2)设直线L:$y=\frac{1}{2}x-3$与点M的轨迹交于B,C两点,问是否存在实数m使得$\overrightarrow{AB}•\overrightarrow{AC}=\frac{9}{2}$?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知n为正偶数,用数学归纳法证明1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…-$\frac{1}{n}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)时,若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设再证n=k+2时等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|2x-1|+|x-2a|.
(1)当a=1时,求f(x)≤3的解集;
(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若不等式x2-2x+a>0恒成立,则a的取值范围是(  )
A.a<0B.a<1C.a>0D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中哪个与函数y=x相等(  )
A.y=($\sqrt{x}$)2B.f(x)=$\frac{{x}^{2}}{x}$C.y=|x|D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

同步练习册答案