精英家教网 > 高中数学 > 题目详情
2.已知抛物线y2=-x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的值;       
(2)若△OAB的面积等于$\frac{5}{4}$,求直线l的方程.

分析 (1)联立直线与抛物线方程,化为关于y的一元二次方程,由根与系数关系求出A,B两点的横纵坐标的和与积,直接运用数量积的坐标运算求解;
(2)直接代入三角形面积公式求解即可

解答 解:(1)设$A({-{y_1}^2,{y_1}})$,$B({-{y_2}^2,{y_2}})$由题意可知:k≠0,∴$x=-\frac{y}{k}+1$,
联立y2=-x得:ky2+y-k=0显然:△>0,
∴$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=-\frac{1}{k}}\\{{y}_{1}•{y}_{2}=-1}\end{array}\right.$,
∴$\overrightarrow{OA}•\overrightarrow{OB}$=(-y12)(-y22)+y1y2=(-1)2+1=0,
(2)∵S△OAB=$\frac{1}{2}$×1×|y1-y2|=$\frac{1}{2}$$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{1}{2}$$\sqrt{\frac{1}{{k}^{2}}+4}$=$\frac{5}{4}$,
  解得:k=±$\frac{2}{3}$,
∴直线l的方程为:2x+3y+2=0或2x-3y+2=0.

点评 本题考查了直线和圆锥曲线的关系,考查了平面向量数量积的坐标运算,训练了三角形面积的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知a>0,函数f(x)=x2+alnx-ax在(0,+∞)上是增函数,则a的最大值为(  )
A.2B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>1})$中,a=$\sqrt{2}$b,且椭圆E上任一点到点$P({-\frac{1}{2},0})$的最小距离为$\frac{{\sqrt{7}}}{2}$.
(1)求椭圆E的标准方程;
(2)如图4,过点Q(1,1)作两条倾斜角互补的直线l1,l2(l1,l2不重合)分别交椭圆E于点A,C,B,D,求证:|QA|•|QC|=|QB|•|QD|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在正项等比数列{an}中,a3=2,a4=8a7,则a9=(  )
A.$\frac{1}{256}$B.$\frac{1}{128}$C.$\frac{1}{64}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,$BC=\sqrt{7},AC=3,BC•sinB=2\sqrt{3}-sinA$,则△ABC的外接圆面积为(  )
A.$\frac{4}{3}π$B.$\frac{7}{3}π$C.D.$\frac{7}{2}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.M是椭圆$\frac{x^2}{9}+{y^2}=1$上动点,F1,F2是椭圆的两焦点,则∠F1MF2的最大值为π-arccos$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A,B是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点,点C在双曲线上,在△ABC中,sinA:sinB=3:1,则该双曲线的离心率的取值范围为(  )
A.$(1,\sqrt{3)}$B.$({1,\frac{{\sqrt{10}}}{2}}]$C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,已知ABCD是边长为1的正方形,Q1为CD的中点,Pi(i=1,2…,n)为AQi与BD的交点,过Pi作CD的垂线,垂足为Qi+1,则$\sum_{i=1}^{10}$S${\;}_{△D{Q_i}{P_i}}$=$\frac{5}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{2x-4,0≤x<4}\\{lo{g}_{2}(x-2)+2,4≤x≤6}\end{array}\right.$,若存在x1,x2∈R,当0≤x1<4≤x2≤6时,f(x1)=f(x2),则x1f(x2)的取值范围是[$\frac{21}{2}$,16).

查看答案和解析>>

同步练习册答案