精英家教网 > 高中数学 > 题目详情
7.如图,已知ABCD是边长为1的正方形,Q1为CD的中点,Pi(i=1,2…,n)为AQi与BD的交点,过Pi作CD的垂线,垂足为Qi+1,则$\sum_{i=1}^{10}$S${\;}_{△D{Q_i}{P_i}}$=$\frac{5}{24}$.

分析 由题意可知:则A(1,1),Q1($\frac{1}{2}$,0),D(1,0),B(0,1),则直线BD:x+y=1,直线AQ:y=2x-1,求得P1($\frac{2}{3}$,$\frac{1}{3}$),则Q2($\frac{2}{3}$,0),则直线AQ2:y=3x-2,P2($\frac{3}{4}$,$\frac{1}{4}$),则Q3($\frac{3}{4}$,0),则Pi($\frac{i+1}{i+2}$,$\frac{1}{i+2}$),Qi($\frac{i}{i+1}$,0),根据三角形面积公式,${S}_{△D{Q}_{I}{P}_{I}}$=$\frac{1}{2}$丨DQi丨丨PiQi+1丨=$\frac{1}{2}$(1-$\frac{i}{i+1}$)×$\frac{1}{i+2}$=$\frac{1}{2}$($\frac{1}{i+1}$-$\frac{1}{i+2}$),采用“裂项法”即可求得$\sum_{i=1}^{10}$S${\;}_{△D{Q_i}{P_i}}$的值.

解答 解:如图,以C点为坐标原点,建立平面直角坐标系,由正方形ABCD边长为1,则A(1,1),Q1($\frac{1}{2}$,0),D(1,0),B(0,1),
则直线BD:x+y=1,直线AQ:y=2x-1,
联立可得P1($\frac{2}{3}$,$\frac{1}{3}$),则Q2($\frac{2}{3}$,0),
则直线AQ2:y=3x-2,
联立直线BD和直线AQ2,可得P2($\frac{3}{4}$,$\frac{1}{4}$),则Q3($\frac{3}{4}$,0),

可得Pi($\frac{i+1}{i+2}$,$\frac{1}{i+2}$),Qi($\frac{i}{i+1}$,0),
则${S}_{△D{Q}_{I}{P}_{I}}$=$\frac{1}{2}$丨DQi丨丨PiQi+1丨=$\frac{1}{2}$(1-$\frac{i}{i+1}$)×$\frac{1}{i+2}$=$\frac{1}{2}$($\frac{1}{i+1}$-$\frac{1}{i+2}$),
$\sum_{i=1}^{10}$S${\;}_{△D{Q_i}{P_i}}$=$\frac{1}{2}$$\sum_{i=1}^{10}$($\frac{1}{i+1}$-$\frac{1}{i+2}$),
=$\frac{1}{2}$[($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{11}$-$\frac{1}{12}$)],
=$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{12}$),
=$\frac{5}{24}$,
则$\sum_{i=1}^{10}$S${\;}_{△D{Q_i}{P_i}}$=$\frac{5}{24}$,

点评 本题考查三角形的面积公式,考查数列的应用,考查利用“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设命题p:实数x满足x2-4ax+3a2<0(a>0),命题q:实数x满足$\frac{x-3}{x-2}≤0$.
(1)若命题p的解集为P,命题q的解集为Q,当a=1时,求P∩Q;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线y2=-x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的值;       
(2)若△OAB的面积等于$\frac{5}{4}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知n为正偶数,用数学归纳法证明1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…-$\frac{1}{n}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)时,若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设再证n=k+2时等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|2x-1|+|x-2a|.
(1)当a=1时,求f(x)≤3的解集;
(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.高三某班要安排6名同学值日(周日休息),每天安排一人,每人值日一天,要求甲必须安排在周一到周四的某一天,乙必须安排在周五或周六的某一天,则不同的值日生表有多少种?(  )
A.144B.192C.360D.720

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若不等式x2-2x+a>0恒成立,则a的取值范围是(  )
A.a<0B.a<1C.a>0D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知一次函数f(x)在R上单调递增,当x∈[0,3]时,值域为[1,4].
(1)求函数f(x)的解析式;
(2)当x∈[-1,8]时,求函数$g(x)=2x-\sqrt{f(x)}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对边的边长分别为a,b,c,已知2sin2$\frac{A}{2}$=$\sqrt{3}$sinA.
(I)求角A的大小;
(II)若$\frac{a}{c}$=2cosB,求$\frac{a}{b}$的值.

查看答案和解析>>

同步练习册答案