精英家教网 > 高中数学 > 题目详情
19.已知n为正偶数,用数学归纳法证明1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…-$\frac{1}{n}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)时,若已假设n=k(k≥2且k为偶数)时等式成立,则还需要用归纳假设再证n=k+2时等式成立.

分析 首先分析题目因为n为正偶数,用数学归纳法证明的时候,若已假设n=k(k≥2,k为偶数)时命题为真时,因为n取偶数,则n=k+1代入无意义,故还需要证明n=k+2成立.

解答 解:用数学归纳法证明1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…-$\frac{1}{n}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)时
若已假设n=k(k≥2,k为偶数)时命题为真,因为n只能取偶数,所以还需要证明n=k+2成立.
故答案为:k+2.

点评 此题主要考查数学归纳法的概念问题,对学生的理解概念并灵活应用的能力有一定的要求,属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若a=log0.60.3,b=0.60.3,则(  )
A.a>1>bB.a>b>1C.b>a>1D.b>1>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在正项等比数列{an}中,a3=2,a4=8a7,则a9=(  )
A.$\frac{1}{256}$B.$\frac{1}{128}$C.$\frac{1}{64}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.M是椭圆$\frac{x^2}{9}+{y^2}=1$上动点,F1,F2是椭圆的两焦点,则∠F1MF2的最大值为π-arccos$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A,B是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点,点C在双曲线上,在△ABC中,sinA:sinB=3:1,则该双曲线的离心率的取值范围为(  )
A.$(1,\sqrt{3)}$B.$({1,\frac{{\sqrt{10}}}{2}}]$C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2$\sqrt{3}$cos2$\frac{x}{4}$-$\sqrt{3}$.
(1)求函数f(x)的最小正周期和对称轴方程;
(2)若△ABC中,内角A满足f(A)=$\frac{3}{2}$,且边BC长为3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,已知ABCD是边长为1的正方形,Q1为CD的中点,Pi(i=1,2…,n)为AQi与BD的交点,过Pi作CD的垂线,垂足为Qi+1,则$\sum_{i=1}^{10}$S${\;}_{△D{Q_i}{P_i}}$=$\frac{5}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=|x-2017|+|x-2016|+…+|x-1|+|x+1|+…+|x+2017|(x∈R),且满足f(a2-3a+2)=f(a-1)的整数a共有n个,g(x)=$\frac{{x}^{2}({x}^{2}+{k}^{2}+2k-4)+4}{({x}^{2}+2)^{2}-2{x}^{2}}$的最小值为m,且m+n=3,则实数k的值为0或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在某次物理实验中,得到一组不全相等的数据x1,x2,x3,…,xn,若a是这组数据的算术平均数,则a满足(  )
A.$\sum_{i=1}^{n}$(xi-a)最小B.$\sum_{i=1}^{n}$|xi-a|最小
C.$\sum_{i=1}^{n}$(xi-a)2最小D.$\frac{1}{n}$$\sum_{i=1}^{n}$|xi-a|最小

查看答案和解析>>

同步练习册答案