16£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n£¬nÎªÆæÊý}\\{{a}_{n}-3n£¬nΪżÊý}\end{array}\right.$
£¨1£©Çóa2£¬a3£¬a4µÄÖµ£»
£¨2£©ÇóÖ¤£ºÊýÁÐ{a2n-$\frac{3}{2}$}ÊǵȱÈÊýÁУ»
£¨3£©ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£¬²¢ÇóÂú×ãSn£¾0µÄËùÓÐÕýÕûÊýnµÄÖµ£®

·ÖÎö £¨1£©Ö±½ÓÓÉÊýÁеÝÍÆÊ½ÇóµÃa2£¬a3£¬a4µÄÖµ£»
£¨2£©Éè${b}_{n}={a}_{2n}-\frac{3}{2}$£¬ÓÉ$\frac{{b}_{n+1}}{{b}_{n}}$½áºÏÊýÁеÝÍÆÊ½Ö¤µÃÊýÁÐ{${a}_{2n}-\frac{3}{2}$}ÊÇÒÔ${a}_{2}-\frac{3}{2}$£¬¼´$-\frac{1}{6}$ΪÊ×ÏÒÔ$\frac{1}{3}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ»
£¨3£©ÓÉ£¨2£©Çó³öa2n£¬²¢½øÒ»²½µÃµ½a2n-1£¬´Ó¶øµÃµ½a2n-1+a2n£¬ÇóµÃS2n£¬ÔÙÓÉS2n-1=S2n-a2nÇóµÃS2n-1£¬µÃµ½Âú×ãSn£¾0µÄËùÓÐÕýÕûÊýnµÄÖµ£®

½â´ð £¨1£©½â£ºÓÉa1=1£¬an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n£¬nÎªÆæÊý}\\{{a}_{n}-3n£¬nΪżÊý}\end{array}\right.$£¬
µÃ${a}_{2}=\frac{1}{3}{a}_{1}+1=\frac{4}{3}$£¬${a}_{3}={a}_{2}-6=\frac{4}{3}-6=-\frac{14}{3}$£¬${a}_{4}=\frac{1}{3}{a}_{3}+3=\frac{13}{9}$£»
£¨2£©Ö¤Ã÷£ºÉè${b}_{n}={a}_{2n}-\frac{3}{2}$£¬
¡ß$\frac{{b}_{n+1}}{{b}_{n}}=\frac{{a}_{2n+2}-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}=\frac{\frac{1}{3}{a}_{2n+1}+£¨2n+1£©-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}$=$\frac{\frac{1}{3}£¨{a}_{2n}-6n£©+£¨2n+1£©-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}$=$\frac{\frac{1}{3}{a}_{2n}-\frac{1}{2}}{{a}_{2n}-\frac{3}{2}}=\frac{1}{3}$£¬
¡àÊýÁÐ{${a}_{2n}-\frac{3}{2}$}ÊÇÒÔ${a}_{2}-\frac{3}{2}$£¬¼´$-\frac{1}{6}$ΪÊ×ÏÒÔ$\frac{1}{3}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ»
£¨3£©½â£ºÓÉ£¨2£©µÃ${a}_{2n}-\frac{3}{2}=-\frac{1}{6}•£¨\frac{1}{3}£©^{n-1}=-\frac{1}{2}£¨\frac{1}{3}£©^{n}$£¬
¼´${a}_{2n}=-\frac{1}{2}•£¨\frac{1}{3}£©^{n}+\frac{3}{2}$£¬
ÓÉ${a}_{2n}=\frac{1}{3}{a}_{2n-1}+£¨2n-1£©$£¬µÃ${a}_{2n-1}=3{a}_{2n}-3£¨2n-1£©=-\frac{1}{2}£¨\frac{1}{3}£©^{n-1}-6n+\frac{15}{2}$£¬
¡à${a}_{2n-1}+{a}_{2n}=-\frac{1}{2}[£¨\frac{1}{3}£©^{n-1}+£¨\frac{1}{3}£©^{n}]-6n+9$$-2£¨\frac{1}{3}£©^{n}-6n+9$£¬
¡àS2n=£¨a1+a2£©+£¨a3+a4£©+¡­+£¨a2n-1+a2n£©
=$-2[\frac{1}{3}+£¨\frac{1}{3}£©^{2}+¡­+£¨\frac{1}{3}£©^{n}]-6£¨1+2+¡­+n£©+9n$
=$-2•\frac{\frac{1}{3}[1-£¨\frac{1}{3}£©^{n}]}{1-\frac{1}{3}}-6•\frac{n£¨n+1£©}{2}+9n$
=$£¨\frac{1}{3}£©^{n}-1-3{n}^{2}+6n=£¨\frac{1}{3}£©^{n}-3£¨n-1£©^{2}+2$£®
ÏÔÈ»µ±n¡ÊN*ʱ£¬{S2n}µ¥µ÷µÝ¼õ£¬
ÓÖµ±n=1ʱ£¬${S}_{2}=\frac{7}{3}$£¾0£¬µ±n=2ʱ£¬${S}_{4}=-\frac{8}{9}$£¼0£¬
¡àµ±n¡Ý2ʱ£¬S2n£¼0£»
${S}_{2n-1}={S}_{2n}-{a}_{2n}=\frac{3}{2}•£¨\frac{1}{3}£©^{n}-\frac{5}{2}-3{n}^{2}+6n$£¬
ͬÀí£¬µ±ÇÒ½öµ±n=1ʱ£¬S2n-1£¾0£¬
×ÛÉÏ£¬Âú×ãSn£¾0µÄËùÓÐÕýÕûÊýnΪ1ºÍ2£®

µãÆÀ ±¾Ì⿼²éÊýÁеĺ¯ÊýÌØÐÔ£¬¿¼²éµÈ±È¹ØÏµµÄÈ·¶¨£¬¿¼²éÂß¼­Ë¼Î¬ÄÜÁ¦ºÍÔËËãÍÆÀíÄÜÁ¦£¬ÊôÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=x2-1£¬º¯Êýg£¨x£©=2tlnx£¬t¡Ü1£®
£¨1£©Èç¹ûº¯Êýf£¨x£©Óëg£¨x£©ÔÚx=1´¦µÄÇÐÏß¾ùΪl£¬ÇóÇÐÏßlµÄ·½³Ì¼°tµÄÖµ£»
£¨2£©ÌÖÂÛº¯Êýh£¨x£©=f£¨x£©-g£¨x£©µÄÁãµã¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ä³Âô³¡Í¬Ê±ÏúÊÛ±äÆµÀäů¿Õµ÷»úºÍÖÇÄÜÏ´Ò»ú£¬ÕâÁ½ÖÖ²úÆ·µÄÊг¡ÐèÇóÁ¿´ó£¬ÓжàÉÙÂô¶àÉÙ£®½ñÄêÎåÒ»¼ÙÆÚ¸ÃÂô³¡Òª¸ù¾Ýʵ¼ÊÇé¿öÈ·¶¨²úÆ·µÄ½ø»õÊýÁ¿£¬ÒÔ´ïµ½×ÜÀûÈó×î´ó£®ÒÑÖªÁ½ÖÖ²úÆ·Ö±½ÓÊÜ×ʽðºÍÀͶ¯Á¦µÄÏÞÖÆ£®¸ù¾Ý¹ýÈ¥ÏúÊÛÇé¿ö£¬µÃµ½Á½ÖÖ²úÆ·µÄÓйØÊý¾ÝÈç±í£º£¨±íÖе¥Î»£º°ÙÔª£©ÊÔÎÊ£ºÔõÑùÈ·¶¨Á½ÖÖ»õÎïµÄ½ø»õÁ¿£¬²ÅÄÜʹÎåÒ»ÆÚ¼äµÄ×ÜÀûÈó×î´ó£¬×î´óÀûÈóÊǶàÉÙ£¿
×ʽðµ¥Î»²úÆ·ËùÐè×ʽð×ʽð¹©Ó¦Á¿
¿Õµ÷»úÏ´Ò»ú
³É±¾3020440
ÀͶ¯Á¦£º¹¤×Ê710156
µ¥Î»ÀûÈó108 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÇúÏßy=x3-x2+4Ôڵ㣨1£¬4£©´¦µÄÇÐÏßµÄÇãб½ÇΪ£¨¡¡¡¡£©
A£®30¡ãB£®45¡ãC£®60¡ãD£®120¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¸´Êýz=i£¨3-i£©µÄ¹²éÊýµÄÐ鲿ÊÇ£¨¡¡¡¡£©
A£®-3iB£®-3C£®$\sqrt{10}$D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×㣺a2+a3=3£¬a3+a4=6£¬ÄÇô$\sqrt{{a_4}•{a_{12}}}$=£¨¡¡¡¡£©
A£®128B£®81C£®64D£®49

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®É趨ÒåÔÚRÉÏµÄÆæº¯Êýy=f£¨x£©£¬Âú×ã¶ÔÈÎÒât¡ÊR¶¼ÓÐf£¨t£©=f£¨1-t£©£¬ÇÒ$x¡Ê[{0£¬\frac{1}{2}}]$ʱ£¬f£¨x£©=-x2£¬Ôò$f£¨{\frac{3}{2}}£©$µÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{9}{4}$B£®$-\frac{9}{4}$C£®$\frac{1}{4}$D£®$-\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÔÚ£¨x2-x+2y£©5µÄÕ¹¿ªÊ½ÖУ¬x4y2µÄϵÊýΪ£¨¡¡¡¡£©
A£®-120B£®120C£®30D£®-80

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚ¡÷ABCÖУ¬Èôb=1£¬c=$\sqrt{3}$£¬A=$\frac{¦Ð}{6}$£¬Ôòcos5B=£¨¡¡¡¡£©
A£®-$\frac{\sqrt{3}}{2}$B£®$\frac{1}{2}$C£®$\frac{1}{2}$»ò-1D£®-$\frac{\sqrt{3}}{2}$»ò0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸