| A. | $\frac{9}{4}$ | B. | $-\frac{9}{4}$ | C. | $\frac{1}{4}$ | D. | $-\frac{1}{4}$ |
分析 根据已知可得函数y=f(x)是周期为2的周期函数,结合$x∈[{0,\frac{1}{2}}]$时,f(x)=-x2,可得答案.
解答 解:∵函数y=f(x)是定义在R上的奇函数,且f(t)=f(1-t),
∴f(x+2)=f[1-(x+2)]=f(-x-1)=-f(x+1)=-f[1-(x+1)]=-f(-x)=f(x),
即函数y=f(x)是周期为2的周期函数,
故f($\frac{3}{2}$)=f($-\frac{1}{2}$)=-f($\frac{1}{2}$),
又∵$x∈[{0,\frac{1}{2}}]$时,f(x)=-x2,
∴f($\frac{3}{2}$)=f($-\frac{1}{2}$)=-f($\frac{1}{2}$)=$(\frac{1}{2})^{2}$=$\frac{1}{4}$,
故选:C.
点评 本题考查的知识点是函数的奇偶性,函数的对称性,函数的周期性,函数求值,根据已知分析出函数y=f(x)是周期为2的周期函数,是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l∥α,m∥α,则l∥m | B. | l⊥α,m⊥α,则l∥m | C. | l⊥n,m⊥n,则l∥m | D. | l?α,m∥α,则l∥m |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a)<f(b)<f(c) | B. | f(b)<f(c)<f(a) | C. | f(b)<f(a)<f(c) | D. | f(c)<f(a)<f(b) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 35 | C. | 48 | D. | 63 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com