7£®Ä³Âô³¡Í¬Ê±ÏúÊÛ±äÆµÀäů¿Õµ÷»úºÍÖÇÄÜÏ´Ò»ú£¬ÕâÁ½ÖÖ²úÆ·µÄÊг¡ÐèÇóÁ¿´ó£¬ÓжàÉÙÂô¶àÉÙ£®½ñÄêÎåÒ»¼ÙÆÚ¸ÃÂô³¡Òª¸ù¾Ýʵ¼ÊÇé¿öÈ·¶¨²úÆ·µÄ½ø»õÊýÁ¿£¬ÒÔ´ïµ½×ÜÀûÈó×î´ó£®ÒÑÖªÁ½ÖÖ²úÆ·Ö±½ÓÊÜ×ʽðºÍÀͶ¯Á¦µÄÏÞÖÆ£®¸ù¾Ý¹ýÈ¥ÏúÊÛÇé¿ö£¬µÃµ½Á½ÖÖ²úÆ·µÄÓйØÊý¾ÝÈç±í£º£¨±íÖе¥Î»£º°ÙÔª£©ÊÔÎÊ£ºÔõÑùÈ·¶¨Á½ÖÖ»õÎïµÄ½ø»õÁ¿£¬²ÅÄÜʹÎåÒ»ÆÚ¼äµÄ×ÜÀûÈó×î´ó£¬×î´óÀûÈóÊǶàÉÙ£¿
×ʽðµ¥Î»²úÆ·ËùÐè×ʽð×ʽð¹©Ó¦Á¿
¿Õµ÷»úÏ´Ò»ú
³É±¾3020440
ÀͶ¯Á¦£º¹¤×Ê710156
µ¥Î»ÀûÈó108 

·ÖÎö ÀûÓÃÏßÐԹ滮µÄ˼Ïë·½·¨½â¾öijЩʵ¼ÊÎÊÌâÊôÓÚÖ±Ïß·½³ÌµÄÒ»¸öÓ¦Óã®±¾ÌâÖ÷Òª¿¼²éÕÒ³öÔ¼ÊøÌõ¼þÓëÄ¿±êº¯Êý£¬×¼È·µØÃè»­¿ÉÐÐÓò£¬ÔÙÀûÓÃͼÐÎÖ±ÏßÇóµÃÂú×ãÌâÉèµÄ×îÓŽ⣮

½â´ð ½â£ºÉè½ø»õÁ¿·Ö±ðΪ¿Õµ÷»úx̨£¬Ï´Ò»úy̨£¬ÀûÈóz°ÙÔª£¬Ôò$\left\{\begin{array}{l}30x+20y¡Ü440\\ 7x+10y¡Ü156\\ x¡ÊN£¬y¡ÊN\end{array}\right.$£¬
»¯¼òΪ$\left\{\begin{array}{l}3x+2y¡Ü44\\ 7x+10y¡Ü156\\ x¡ÊN£¬y¡ÊN\end{array}\right.$Ä¿±êº¯Êýz=10x+8y¼´$y=-\frac{5}{4}x+\frac{z}{8}$£¬×ö³ö¿ÉÐÐÓòÈçͼËùʾ£º

ÓÉ$\left\{\begin{array}{l}3x+2y=44\\ 7x+10y=156\end{array}\right.$¿ÉµÃA£¨8£¬10£©£¬Æ½ÒÆ$y=-\frac{5}{4}x+\frac{z}{8}$¾­¹ýA£¨8£¬10£©µãʱ½Ø¾à$\frac{z}{8}$×î´ó£¬¼´Ä¿±êº¯Êýz×î´ó£¬
´Ëʱz=10¡Á8+8¡Á10=160°ÙÔª£®

µãÆÀ ÓÃͼ½â·¨½â¾öÏßÐԹ滮ÎÊÌâʱ£¬·ÖÎöÌâÄ¿µÄÒÑÖªÌõ¼þ£¬ÕÒ³öÔ¼ÊøÌõ¼þºÍÄ¿±êº¯ÊýÊǹؼü£¬¿ÉÏȽ«ÌâÄ¿ÖеÄÁ¿·ÖÀà¡¢Áгö±í¸ñ£¬ÀíÇåÍ·Ð÷£¬È»ºóÁгö²»µÈʽ×飨·½³Ì×飩ѰÇóÔ¼ÊøÌõ¼þ£¬²¢¾ÍÌâÄ¿ËùÊöÕÒ³öÄ¿±êº¯Êý£®È»ºó½«¿ÉÐÐÓò¸÷½ÇµãµÄÖµÒ»Ò»´úÈ룬×îºó±È½Ï£¬¼´¿ÉµÃµ½Ä¿±êº¯ÊýµÄ×îÓŽ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈôÇúÏßy=f£¨x£©Ôڵ㣨x0£¬f£¨x0£©£©´¦µÄÇÐÏß·½³ÌΪ3x-y+1=0£¬Ôò£¨¡¡¡¡£©
A£®f¡ä£¨x0£©£¼0B£®f¡ä£¨x0£©£¾0C£®f¡ä£¨x0£©=0D£®f¡ä£¨x0£©²»´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýf£¨x£©=$\left\{\begin{array}{l}{4-x£¬}&{x¡Ü0}\\{\sqrt{4-{x}^{2}£¬}}&{0£¼x¡Ü2}\end{array}\right.$£¬Ôò${¡Ò}_{-2}^{2}$f£¨x£©dxµÄֵΪ¦Ð+10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®${¡Ò}_{0}^{2}$£¨4-2x£©£¨4-x2£©dx=$\frac{40}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãFÓëÍÖÔ²$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1µÄÓÒ½¹µãÖØºÏ£¬Å×ÎïÏßCµÄ×¼ÏßlÓëxÖáµÄ½»µãΪM£¬¹ýµãMÇÒбÂÊΪkµÄÖ±Ïßl1½»Å×ÎïÏßCÓÚA£¬BÁ½µã£¬Ïß¶ÎABµÄÖеãΪP£¬Ö±ÏßPFÓëÅ×ÎïÏßC½»ÓÚD£¬EÁ½µã
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨¢ò£©Èô¦Ë=$\frac{|MA|•|MB|}{|FD|•|FE|}$£¬Ð´³ö¦Ë¹ØÓÚkµÄº¯Êý½âÎöʽ£¬²¢ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬ËüµÄÒ»¸ö¶¥µãÇ¡ºÃÊÇÅ×ÎïÏßx2=8$\sqrt{3}$yµÄ½¹µã£®
£¨I£©ÇóÍÖÔ²C±ê×¼·½³Ì£»
£¨¢ò£©Ö±Ïßx=2£¬ÓëÍÖÔ²½»ÓÚP£¬QÁ½µã£¬A£¬BÊÇÍÖÔ²ÉÏλÓÚÖ±Ïßx=2Á½²àµÄ¶¯µã£®
¢ÙÈôÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬ÇóËıßÐÎAPBQÃæ»ýµÄ×î´óÖµ£»
¢Úµ±¶¯µãA£¬BÂú×ã¡ÏAPQ=¡ÏBPQʱ£¬ÊÔÎÊÖ±ÏßABµÄбÂÊÊÇ·ñΪ¶¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÊýÁÐ{an}Âú×ãa1=1£¬an+1=$\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$£¨n¡ÊN*£©
£¨1£©Ö¤Ã÷£ºÊýÁÐ{$\frac{2^n}{a_n}$}ÊǵȲîÊýÁУ»
£¨2£©Éèbn=$\frac{{{2^{n+1}}}}{a_n}$+3£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n£¬nÎªÆæÊý}\\{{a}_{n}-3n£¬nΪżÊý}\end{array}\right.$
£¨1£©Çóa2£¬a3£¬a4µÄÖµ£»
£¨2£©ÇóÖ¤£ºÊýÁÐ{a2n-$\frac{3}{2}$}ÊǵȱÈÊýÁУ»
£¨3£©ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£¬²¢ÇóÂú×ãSn£¾0µÄËùÓÐÕýÕûÊýnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨-x£©=f£¨x£©£¬ÇÒµ±x£¼0£¬f£¨x£©=3x+1£¬Èôa=2${\;}^{\frac{4}{3}}$£¬b=4${\;}^{\frac{2}{5}}$£¬c=25${\;}^{\frac{1}{3}}$£¬ÔòÓУ¨¡¡¡¡£©
A£®f£¨a£©£¼f£¨b£©£¼f£¨c£©B£®f£¨b£©£¼f£¨c£©£¼f£¨a£©C£®f£¨b£©£¼f£¨a£©£¼f£¨c£©D£®f£¨c£©£¼f£¨a£©£¼f£¨b£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸