精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1) 时,证明:

(2)当时,直线和曲线切于点,求实数的值;

(3)当时,不等式恒成立,求实数的取值范围.

【答案】(1)见解析;(2);(3).

【解析】试题分析】(1)依据题设条件构造函数,运用导数知识求出其最小值,从而使得不等式获证;(2)先设切点坐标为 ,然后建立方程组,求得.进而得到;(3)依据题设条件将不等式转化为恒成立, 进而分离参数,构造函数,将问题转化为求函数的最小值来求解:

解:(1)记

递减;当 递增,

.

(2)切点为 ,则

,∴

,∴由(1)得.

所以.

(3)由题意可得恒成立,

所以

下求的最小值,

由(1) .

所以 递减,

,∴.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.

(1)试根据上述数据完成列联表;

数学成绩及格

数学成绩不及格

合计

比较细心

45

比较粗心

合计

60

100

(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?

参考数据:独立检验随机变量的临界值参考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.

(1)试根据上述数据完成列联表;

数学成绩及格

数学成绩不及格

合计

比较细心

45

比较粗心

合计

60

100

(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?

参考数据:独立检验随机变量的临界值参考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在,分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见下图)

(Ⅰ)求所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”?

附表及公式:

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中是自然对数的底数.

(1)若上为单调函数,求实数的取值范围;

(2)若,求证: 有唯一零点的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,在以极点为直角坐标原点,极轴为轴的正半轴建立的平面直角坐标系中,直线的参数方程为为参数).

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)在平面直角坐标系中,设曲线经过伸缩变换 得到曲线,若为曲线上任意一点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某高中学生每天的睡眠时间,随即对20名男生和20名女生进行问卷调查.

(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“睡眠严重不足”的概率;

(2)完成下面列联表,并回答是否有的把握认为“睡眠时间与性别有关”?

参考公式:

临界表值:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据目前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:

男性

女性

合计

20~35岁

40

100

36~50岁

40

90

合计

100

90

190

(1)求统计数据表中的值;

(2)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用“DD共享单车”情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;

(3)根据以上列联表,判断使用“DD共享单车”的人群中,能否有的把握认为“性别”与“年龄”有关,并说明理由.

参考数表:

参考公式: .

查看答案和解析>>

同步练习册答案