精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的多面体中, 平面 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

【答案】(1)见解析;(2).

【解析】试题分析:(1)由 ,知.由 的中点,知四边形是平行四边形,由此能证明线面平行;(2)先证知两两垂直.以点为坐标原点, 分别为轴建立空间直角坐标系,利用向量法能够求出二面角的余弦值.

试题解析:(1)证明:∵ ,∴,又∵ 的中点,∴,且,∴四边形是平行四边形,∴.∵平面 平面,∴平面.

(2)∵平面 平面 平面,∴ ,又,∴两两垂直,以点为坐标原点, 分别为轴,建立如图的空间直角坐标系,由已知得 ,由已知得是平面的法向量,设平面的法向量为,∵ ,∴,即,令,得.设二面角的大小为. ,∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件.今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为元/件(),则新增的年销量(万件).

(1)写出今年商户甲的收益(单位:万元)与的函数关系式;

(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1) 时,证明:

(2)当时,直线和曲线切于点,求实数的值;

(3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 的中点.

(1)求证:

(2)设平面平面 ,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某养鸡场为检验某种药物预防某种疾病的效果,取100只鸡进行对比试验,得到如下列联表(表中部分数据丢失, 表示丢失的数据):

工作人员记得.

(1)求出列联表中数据 的值;

(2)能否在犯错误的概率不超过0.005的前提下认为药物有效?

参考公式: ,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着智能手机的发展,微信越来越成为人们交流的一种方式,某机构对使用微信交流的态度进行调查,随机调查了50人,他们年龄的频数分布及对使用微信交流赞成人数如表:

年龄(岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(1)由以上统计数据填写下面列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;

年龄不低于45岁的人

年龄低于45岁的人

合计

赞成

不赞成

合计

(2)若对年龄分别在 的被调查人中各抽取一人进行追踪调查,求选中的2人中至少有一人赞成使用微信交流的概率.

参考公式: ,其中

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查高一新生中女生的体重情况,校卫生室随机选20名女生作为样本,测量她们的体重(单位:kg),获得的所有数据按照区间 进行分组,得到频率分布直方图如图所示,已知样本中体重在区间上的女生数与体重在区间上的女生数之比为.

(1)求的值;

(2)从样本中体重在区间上的女生中随机抽取两人,求体重在区间上的女生至少有一人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知袋中放有形状大小相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个,从袋中随机抽取一个小球,取到标号为2的小球的概率为,现从袋中不放回地随机取出2个小球,记第一次取出的小球标号为,第二次取出的小球标号为.

(1)记“”为事件,求事件发生的概率.

(2)在区间上任取两个实数,求事件恒成立”的概率.

查看答案和解析>>

同步练习册答案