精英家教网 > 高中数学 > 题目详情

【题目】已知袋中放有形状大小相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个,从袋中随机抽取一个小球,取到标号为2的小球的概率为,现从袋中不放回地随机取出2个小球,记第一次取出的小球标号为,第二次取出的小球标号为.

(1)记“”为事件,求事件发生的概率.

(2)在区间上任取两个实数,求事件恒成立”的概率.

【答案】(1) (2)

【解析】试题分析:

(1)由题意可得基本事件的总数为12,利用古典概型公式可得事件发生的概率

(2)利用题意得到关于x,y的不等式组,结合线性规划相关知识和几何概型计算公式可得事件恒成立”的概率.

试题解析:

(1)由题意可知,基本事件的总数为12,事件所包含的基本事件个数为4

事件发生的概率

(2)由题意得

事件恒成立

有几何概型知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据目前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:

男性

女性

合计

20~35岁

40

100

36~50岁

40

90

合计

100

90

190

(1)求统计数据表中的值;

(2)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用“DD共享单车”情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;

(3)根据以上列联表,判断使用“DD共享单车”的人群中,能否有的把握认为“性别”与“年龄”有关,并说明理由.

参考数表:

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, .

)当时,求曲线在点处的切线方程;

)当时,求函数的单调区间;

)当时,函数上的最大值为,若存在,使得成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满足100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.

分组

频数

频率

5

0.05

0.20

35

25

0.25

15

0.15

合计

100

1.00

(1)求的值并估计这100名考生成绩的平均分;

(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求的取值范围;

(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条不重合的直线, 是两个不重合的平面,给出下列命题:

①若 ,则

②若 ,则

③若 ,则

④当,且时,若,则.

其中正确命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.

现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min,在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=,cos C=

(1)求索道AB的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?

(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求f(x)的解析式;
(2)若对任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案