精英家教网 > 高中数学 > 题目详情
9.在($\frac{1}{\sqrt{x}}$-2x)9的展开式中的常数项是-672.

分析 在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项的值.

解答 解:($\frac{1}{\sqrt{x}}$-2x)9的展开式的通项为C9r(-2)rx${\;}^{\frac{3r-9}{2}}$,
令$\frac{3r-9}{2}$=0,解得r=3,
故($\frac{1}{\sqrt{x}}$-2x)9的展开式中的常数项是C93(-2)3=-672,
故答案为:-672.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(1)求函数$y=\sqrt{1-cos\frac{x}{2}}$的定义域;
(2)求函数$y=\frac{3sinx+1}{sinx-2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,内角A,B,C所对的边分别是a,b,c,若B=30°,$c=2\sqrt{3}$,b=2,则C=(  )
A.$\frac{π}{3}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{π}{4}$或$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算下列各式的值.
(1)$\frac{{tan{{53}°}+tan{7°}+tan{{120}°}}}{{tan{{53}°}•tan7{\;}°}}$;
(2)[2sin50°+sin10°(1+$\sqrt{3}tan{10°}$)]$\sqrt{1-cos{{160}°}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个关于数列命题:
(1)若{an}是等差数列,则三点$(10,\frac{{{S_{10}}}}{10})$、$(100,\frac{{{S_{100}}}}{100})$、$(110,\frac{{{S_{110}}}}{110})$共线;
(2)若{an}是等比数列,则Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比数列;
(3)等比数列{an}的前n项和为Sn,若对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b≠0,b≠1,b、r均为常数)的图象上,则r的值为-1.
(4)对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an}的“差数列”的通项为2n,则数列{an}的前n项和Sn=2n+1-2
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知D是BC延长线上一点,点E为线段AD的中点,若$\overrightarrow{BC}$=2$\overrightarrow{CD}$,且$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$,则λ=(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=aln(x+1)+bx+1
(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y-3=0平行,求a的值;
(2)若$b=\frac{1}{2}$,试讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为1211.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式 x2-3x-4>0的解集为{x|x<-1或x>4}.

查看答案和解析>>

同步练习册答案