分析 由题意得到∠BAC大于∠B,如图所示,作AD,使∠BAD=∠B,得到∠DAC=∠BAC-∠B,设AD=BD=x,则DC=4-x,在△ADC中,由余弦定理列出关于x的方程,求出方程的解,得到x的值,确定出AD与DC的长,在三角形ADC中,利用余弦定理即可求出cosC的值,可得sinC的值,从而求得△ABC面积是$\frac{1}{2}$AC•BC•sinC的值.
解答
解:△ABC中,BC=4,AC=3,cos(A-B)=$\frac{3}{4}$,
∴A>B,(A-B)为锐角,
如图,作AD,使∠BAD=∠B,则∠DAC=∠BAC-∠B,
即cos∠DAC=cos(∠BAC-∠B)=$\frac{3}{4}$.
设AD=BD=x,则DC=4-x,
在△ADC中,由余弦定理得:CD2=AD2+AC2-2AD•AC•cos∠DAC,
即(4-x)2=x2+9-2x×3×$\frac{3}{4}$,
解得:x=2,
∴AD=2,DC=2,
在△ADC中,由余弦定理得cosC=$\frac{A{C}^{2}+D{C}^{2}-A{D}^{2}}{2AC•CD}$=$\frac{{3}^{2}+{2}^{2}-{2}^{2}}{2×3×2}$=$\frac{3}{4}$,
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{7}}{4}$,
故△ABC面积是:$\frac{1}{2}$AC•BC•sinC=$\frac{1}{2}$×3×4×$\frac{\sqrt{7}}{4}$=$\frac{3\sqrt{7}}{2}$,
故答案是:$\frac{3\sqrt{7}}{2}$.
点评 此题考查了余弦定理,熟练掌握余弦定理是解本题的关键,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | f(x) | B. | -f(x) | C. | f′(x) | D. | -f′(x) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com