精英家教网 > 高中数学 > 题目详情
13.如果复数$\frac{2-bi}{1+i}$(b∈R,i为虚数单位)的实部和虚部互为相反数,则b的值等于(  )
A.0B.lC.2D.3

分析 利用复数代数形式的乘除运算化简,由实部加虚部等于0求得b的值.

解答 解:$\frac{2-bi}{1+i}$=$\frac{(2-bi)(1-i)}{(1+i)(1-i)}=\frac{2-b-(2+b)i}{2}=\frac{2-b}{2}-\frac{2+b}{2}i$,
由$\frac{2-b}{2}-\frac{2+b}{2}=0$,解得:b=0.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,a3=5,S8=64.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:$\frac{1}{{S}_{n-1}}+\frac{1}{{S}_{n+1}}$>$\frac{2}{{S}_{n}}$(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了了解学生的校园安全意识,某学校在全校抽取部分学生进行了消防知识问卷调查,问卷由三道选择题组成,每道题答对得5分,答错得0分,现将学生答卷得分的情况统计如下:

性别
人数
分数
0分5分10分15分
女生20x3060
男生102535y
已知被调查的所有女生的平均得分为8.25分,现从所有答卷中抽取一份,抽到男生的答卷且得分是15分的概率为$\frac{1}{10}$.
(Ⅰ)求x,y的值;
(Ⅱ)现要从得分是15分的学生中用分层抽样的方法抽取6人进行消防知识培训,再从这6人中随机抽取2人参加消防知识竞赛,求所抽取的2人中至少有1名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且${s}_{n}=\frac{1}{2}{n}^{2}+\frac{11}{2}n(n∈{N}^{*})$.
(1)求数列{an}的通项公式;
(2)设${c}_{n=}\frac{1}{(2{a}_{n}-11)(2{a}_{n}-9)}$,数列{cn}的前n项和为Tn,求使不等式Tn>$\frac{k}{2014}$对一切n∈N*都成立的最大正整数k的值;
(3)设f(n)=$\left\{\begin{array}{l}{{a}_{n}(n=2k-1,k∈{N}^{*})}\\{3{a}_{n}-13(n=2k,k∈{N}^{*})}\end{array}\right.$,是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点是F(c,0),左右顶点分别为A,B,上下顶点分别是C,D,且点P(2a,b)满足PF⊥CF,
(Ⅰ)求椭圆E的离心率,并证明P,B,D三点共线;
(Ⅱ)对于给定的椭圆E,若点R(2a,3c),过点A的直线l与椭圆E相交于另一点Q,当△AQR的面积最大等于9,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了研究“教学方式”对教学质量的影响,某校数学老师分别用两种不同的教学方式对入学时数学平均分数和优秀率都相同的甲、乙两个班级进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学中至少有一名被抽中的概率:
(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断是否有99%把握认为“成绩优秀与教学方式有关”.
甲班乙班合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(x2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.7910.828
参考公式:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{1}{2}{x^2}+alnx$,g(x)=(1+a)x,(a∈R).
(Ⅰ)设h(x)=f(x)-g(x),求h(x)的单调区间;
(Ⅱ)若对?x>0,总有f(x)≥g(x)成立.
(1)求a的取值范围;
(2)证明:对于任意的正整数m,n,不等式$\frac{1}{ln(m+1)}+\frac{1}{ln(m+2)}+…+\frac{1}{ln(m+n)}$$>\frac{n}{m(m+n)}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上单调递增,若a,b均为不等于1的正实数,则a>b是$f(\frac{1}{{{{log}_a}2}})+f({log_{\frac{1}{2}}}b)>0$成立的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某射手射击一次命中的概率是0.7,连续两次均射中的概率是0.4,已知某次射中,则随后一次的射中的概率是$\frac{4}{7}$.

查看答案和解析>>

同步练习册答案