精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上单调递增,若a,b均为不等于1的正实数,则a>b是$f(\frac{1}{{{{log}_a}2}})+f({log_{\frac{1}{2}}}b)>0$成立的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 先求出函数f(x)在R上的单调性,再结合对数函数的性质,从而判断出$f(\frac{1}{{{{log}_a}2}})+f({log_{\frac{1}{2}}}b)>0$成立的充要条件,进而得到答案.

解答 解:由函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上单调递增,
∴函数f(x)在R上单调递增,
若$f(\frac{1}{{{{log}_a}2}})+f({log_{\frac{1}{2}}}b)>0$,
则f(${log}_{2}^{a}$)>-f(-${log}_{2}^{b}$)=f(${log}_{2}^{b}$),
则${log}_{2}^{a}$>${log}_{2}^{b}$,
则a>b,
故选:C.

点评 本题考查了充分必要条件,考查了对数函数的性质,考查函数的单调性,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)是奇函数,当x>0时,f(x)=x2+ln(x+$\sqrt{1+{x}^{2}}$),则当x<0时,f(x)=(  )
A.-x2+ln(x+$\sqrt{1+{x}^{2}}$)B.x2-ln(x+$\sqrt{1+{x}^{2}}$)C.-x2+ln(-x+$\sqrt{1+{x}^{2}}$)D.x2+ln(x+$\sqrt{1+{x}^{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果复数$\frac{2-bi}{1+i}$(b∈R,i为虚数单位)的实部和虚部互为相反数,则b的值等于(  )
A.0B.lC.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆的左焦点为F1,右焦点为F2.若椭圆上存在一点P,满足线段PF2相切于以椭圆的短轴为直径的圆,切点为线段PF2的中点,则该椭圆的离心率为$\frac{{\sqrt{5}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0∉A则实数b的取值范围是(  )
A.0≤b≤4B.b≤0或 b≥4C.0≤b<4D.b<0或b≥4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的前n项和Sn=n2,则a32-a22的值为(  )
A.9B.16C.21D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:y=$\frac{{\sqrt{3}}}{3}$x+1过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点和一个顶点.
(1)求椭圆C的标准方程;
(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴交于点M,求常数λ使得kAM=λkBD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦点分别为${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,P为椭圆C上任一点,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值为1.
(1)求椭圆C的方程;
(2)已知点A(1,0),试探究是否存在直线l:y=kx+m与椭圆C交于D、E两点,且使得|AD|=|AE|?若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学生参加3门课程的考试,假设该学生第一门课程取得优秀成绩的概率为$\frac{3}{4}$,第二门、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相可独立,记X为该生取得优秀成绩的课程数,已知p(X=0)=P(X=3)=$\frac{3}{32}$.
(1)求p、q的值;
(2)求X的数学期望E(X).

查看答案和解析>>

同步练习册答案