精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)满足f(x)=f(π-x),且当x∈(-$\frac{π}{2}$,$\frac{π}{2}$)时,f(x)=ex+sinx,则(  )
A.$f(\frac{π}{3})<f(\frac{π}{4})<f(\frac{5π}{6})$B.$f(\frac{π}{4})<f(\frac{π}{3})<f(\frac{5π}{6})$C.$f(\frac{π}{4})<f(\frac{5π}{6})<f(\frac{π}{3})$D.$f(\frac{5π}{6})<f(\frac{π}{4})<f(\frac{π}{3})$

分析 由f(x)=f(π-x)知,f($\frac{5π}{6}$)=f(π-$\frac{5π}{6}$)=f($\frac{π}{6}$),由当x∈(-$\frac{π}{2}$,$\frac{π}{2}$)时,f(x)=ex+sinx为增函数,即可判断大小.

解答 解:由f(x)=f(π-x)知,
∴f($\frac{5π}{6}$)=f(π-$\frac{5π}{6}$)=f($\frac{π}{6}$),
∵当x∈(-$\frac{π}{2}$,$\frac{π}{2}$)时,f(x)=ex+sinx为增函数
∵$\frac{π}{6}$<$\frac{π}{4}$<$\frac{π}{3}$<$\frac{π}{2}$,
∴f($\frac{π}{6}$)<f($\frac{π}{4}$)<f($\frac{π}{3}$),
∴f($\frac{5π}{6}$)<f($\frac{π}{4}$)<f($\frac{π}{3}$),
故选:D

点评 本题考查函数的单调性、对称性,考查学生灵活运用函数性质解决相关问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知直线l:y=-2,定点F(0,2),P是直线$x-y+2\sqrt{2}=0$上的动点,若经过点F,P的圆与l相切,则这个圆面积的最小值为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆的左右焦点分别为$(-\sqrt{2},0),(\sqrt{2},0)$,点$A(\sqrt{2},\frac{{\sqrt{3}}}{3})$在椭圆C上,直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P
(1)求椭圆C的方程
(2)若圆P与x轴相切,求圆心P的坐标
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)化下列曲线的极坐标方程为直角坐标方程:①ρ=4sinθ②ρ2cos2θ=16
(2)直线方程2x-y+7=0化为极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l1的参数方程$\left\{\begin{array}{l}{x=2+\sqrt{2}t}\\{y=1+\sqrt{2}t}\end{array}\right.$(t是参数),直线l2的极坐标方程为ρ(cosθ+sinθ)=2,则l1与l2的夹角是90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是R上的奇函数,g(x)是R上的偶函数,且有g(1)=0,当x>0时,有f′(x)g(x)+f(x)g′(x)>0,则f(x)g(x)>0的解集为(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.集合{1,2,3,…,n}(n≥3)中,每两个相异数作乘积,将所有这些乘积的和记为Tn,如:${T_3}=1×2+1×3+2×3=\frac{1}{2}[{6^2}-({1^2}+{2^2}+{3^2})]=11$;${T_4}=1×2+1×3+1×4+2×3+2×4+3×4=\frac{1}{2}[{10^2}-({1^2}+{2^2}+{3^2}+{4^2})]=35$;${T_5}=1×2+1×3+1×4+1×5+…+3×5+4×5=\frac{1}{2}[{15^2}-({1^2}+{2^2}+{3^2}+{4^2}+{5^2})]=85$
则T8=546.(写出计算结果)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了调查每天微信用户使用微信的时间,某经销化妆品分微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控非微信控合计
男性262450
女性302050
合计5644100
(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜各1份,再从抽取的这5人中再随机抽取3人赠送200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列和数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C的一个焦点为$(0,\sqrt{3})$,且经过点$P(\frac{1}{2},\sqrt{3})$.
(1)求椭圆C的标准方程;
(2)已知A(1,0),直线l与椭圆C交于M,N两点,且AM⊥AN;
(ⅰ)若|AM|=|AN|,求直线l的方程;
(ⅱ)若AH⊥MN于H,求点H的轨迹方程.

查看答案和解析>>

同步练习册答案