分析 (1)由题意可设椭圆标准方程$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),结合已知及隐含条件列关于a,b,c的方程组,求解方程组得到a2,b2的值,则椭圆方程可求;
(2)由椭圆方程求得A的坐标,结合F的坐标得E的坐标,写出AE、AF所在直线方程,求出M、N的坐标,得到以MN为直径的圆的方程.
解答 解:(1)由题意可设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),![]()
则$\left\{\begin{array}{l}{c=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{4}{{a}^{2}}+\frac{2}{{b}^{2}}=1}\end{array}\right.$,解得:a2=8,b2=4.
∴椭圆C的方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$;
(2)如图,F(2,$\sqrt{2}$),E(-2,-$\sqrt{2}$),A(-$2\sqrt{2}$,0),
则AE:$\frac{y+\sqrt{2}}{\sqrt{2}}=\frac{x+2}{2-2\sqrt{2}}$,取x=0,得y=-2-$2\sqrt{2}$;
AF:$\frac{y-0}{\sqrt{2}}=\frac{x+2\sqrt{2}}{2+2\sqrt{2}}$,取x=0,得y=$2\sqrt{2}-2$.
∴MN的中点坐标为(0,-1),
∴以MN为直径的圆的方程为x2+(y+1)2=8.
点评 本题考查椭圆的简单性质,考查直线与圆位置关系的应用,考查整体运算思想方法,是中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-1)2+(y-1)2=5 | B. | (x+1)2+(y+1)2=5 | C. | (x-1)2+y2=5 | D. | x2+(y-1)2=5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)在(0,+∞)上是增函数 | B. | f(x)在$(0,\frac{1}{e})$上是增函数 | ||
| C. | 当x∈(0,1)时,f(x)有最小值$-\frac{1}{e}$ | D. | f(x)在定义域内无极值 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com