精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=4lnx+ax2-6x+b(a,b为常数),且x=2为f(x)的一个极值点,则a的值为1.

分析 求出函数的导数,得到f′(2)=0,解出即可.

解答 解:函数f (x)的定义域为(0,+∞),
∵f′(x)=$\frac{4}{x}$+2ax-6,x=2为f(x)的一个极值点,
∴f'(2)=2+4a-6=0,
∴a=1,
故答案为:1.

点评 本题考查了函数的极值的意义,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值的和为a.
(1)求a的值;
(2)设函数Φ(x)=loga$\frac{mx}{\sqrt{1+{x}^{2}}}$,若对任意x∈[1,2],不等式Φ(x)+logam≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知椭圆C经过点(2,$\sqrt{2}$),且中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(-2,0),直线y=kx(k≠0)与椭圆C交于E、F两点,直线AE,AF分别与y轴交于点M,N.
(1)求椭圆C的方程;
(2)若点F的坐标为(2,$\sqrt{2}$),求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线f(x)=$\frac{lnx}{x}$,求曲线在点P(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0,c=$\sqrt{{a}^{2}+{b}^{2}}$)中,已知c,$\sqrt{2}$a,$\sqrt{2}$b成等比数列,则该双曲线的离心率等于(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于(  )
A.$\sqrt{13}$B.$\sqrt{14}$C.2$\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数g(x)=x2+(a-1)x+a-2a2,h(x)=(x-1)2,若不等式g(x)>0的解集为集合A,不等式h(x)<1的解集为集合B.
(1)若集合A∩B≠∅,求实数a的取值范围.
(2)已知logx[f(x)]-logx[g(x)]=1,且不等式f(x)>0的解集为集合C,若集合C∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥BC.
(1)求证:OE⊥FC;
(2)设AF=1,AC=$\sqrt{3}$,求二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\sqrt{x}$
(Ⅰ)计算f(x)的图象在点(4,2)处的切线斜率;
(Ⅱ)求此切线方程.

查看答案和解析>>

同步练习册答案