精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值的和为a.
(1)求a的值;
(2)设函数Φ(x)=loga$\frac{mx}{\sqrt{1+{x}^{2}}}$,若对任意x∈[1,2],不等式Φ(x)+logam≥0恒成立,求实数m的取值范围.

分析 (1)利用函数y=ax与y=loga(x+1)具有相同的单调性,得出f(x)在[0,1]上具有单调性,列出方程f(0)+f(1)=a,求出a的值;
(2)根据任意x∈[1,2],不等式Φ(x)+logam≥0恒成立,转化为m>0且m2≤$\frac{\sqrt{1+{x}^{2}}}{x}$,构造函数g(x)=$\frac{\sqrt{1{+x}^{2}}}{x}$,x∈[1,2],求出g(x)的最小值g(x)min,由此求出m的取值范围.

解答 解:(1)∵y=ax与y=loga(x+1)具有相同的单调性,
∴f(x)=ax+loga(x+1)在[0,1]上单调,
∴f(0)+f(1)=a,
即a0+loga1+a1+loga2=a,
化简得1+loga2=0,解得a=$\frac{1}{2}$;
(2)∵函数Φ(x)=loga$\frac{mx}{\sqrt{1+{x}^{2}}}$,
对任意x∈[1,2],不等式Φ(x)+logam≥0恒成立,
即${log}_{\frac{1}{2}}$$\frac{mx}{\sqrt{1{+x}^{2}}}$+${log}_{\frac{1}{2}}$m≥0恒成立,
∴${log}_{\frac{1}{2}}$$\frac{{m}^{2}x}{\sqrt{1{+x}^{2}}}$≥0恒成立,且m>0;
∴0<$\frac{{m}^{2}x}{\sqrt{1{+x}^{2}}}$≤1,
即m2≤$\frac{\sqrt{1+{x}^{2}}}{x}$,
设g(x)=$\frac{\sqrt{1{+x}^{2}}}{x}$,x∈[1,2],
∴g(x)=$\sqrt{\frac{1}{{x}^{2}}+1}$,
当x∈[1,2]时,$\frac{1}{x}$∈[$\frac{1}{2}$,1],
∴$\frac{1}{{x}^{2}}$+1∈[$\frac{5}{4}$,2];
∴g(x)的最小值是g(x)min=g(2)=$\frac{\sqrt{5}}{2}$;
令m2≤$\frac{\sqrt{5}}{2}$,
解得-$\frac{\root{4}{20}}{2}$≤m≤$\frac{\root{4}{20}}{2}$,
又m>0,
∴m的取值范围是0<m≤$\frac{\root{4}{20}}{2}$.

点评 本题主要考查了指数函数与对数函数的单调性应用问题,也考查了不等式恒成立与函数的最值问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在斜三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,∠AA1B=∠AA1C1=60°,∠BB1C1=90°,侧棱长AA1=3.
(1)求此三棱柱的表面积;
(2)若${V_{棱柱}}={S_{△{B_1}D{C_1}}}•A{A_1}$,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}是一个等差数列,且a2=1,a5=-5.
(1)求{an}的通项公式;
(2)设${c_n}=\frac{{5-{a_n}}}{2},{b_n}={2^{c_n}}$,记数列{log2bn}的前n项和为Tn,求满足不等式Tn≥2016的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的5倍记分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量X的分布列.
(3)记分介于18分到28分之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+$\frac{a}{x}$(a∈R).
(1)讨论函数f(x)的单调性;
(2)若a=1,且xf(x)>(k-1)(x-1)(k∈Z)对任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=-aln(x+1)+$\frac{a+1}{x+1}$-a-1(a∈R).
(Ⅰ)讨论f(x)在(0,+∞)上的单调性;
(Ⅱ)若对任意的正整数n都有(1+$\frac{1}{n}$)n-a>e成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx,g(x)=$\frac{1}{2}a{x^2}$-bx,设h(x)=f(x)-g(x).
(1)求函数F(x)=f(x)-x的极值;
(2)若g(2)=2,若a<0,讨论函数h(x)的单调性;
(3)若函数g(x)是关于x的一次函数,且函数h(x)有两个不同的零点x1,x2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象.
(Ⅰ)求φ的值及函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=4lnx+ax2-6x+b(a,b为常数),且x=2为f(x)的一个极值点,则a的值为1.

查看答案和解析>>

同步练习册答案