分析 根据题意,由圆C的参数方程可得|PO|2=(cosα-1)2+(sinα+1)2,对其化简变形可得|PO|2≥(3-2$\sqrt{2}$),进而可得|PO|≥$\sqrt{2}$-1,解可得答案.
解答 解:根据题意,曲线C的参数方程为$\left\{\begin{array}{l}{x=cosα-1}\\{y=sinα+1}\end{array}\right.$,
点P为曲线C上的动点,
则|PO|2=(cosα-1)2+(sinα+1)2=(cos2α+sin2α)+2(sinα-cosα)+2=3-2(sinα-cosα)=3-2$\sqrt{2}$sin(α-$\frac{π}{4}$),
分析可得:|PO|2≥(3-2$\sqrt{2}$),
则有|PO|≥$\sqrt{2}$-1,
即|PO|的最小值为$\sqrt{2}$-1;
故答案为:$\sqrt{2}$-1.
点评 本题考查圆的参数方程,关键是掌握参数方程的形式.
科目:高中数学 来源: 题型:选择题
| A. | 2或4 | B. | 2或3 | C. | 1或4 | D. | 1或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≤0} | B. | {x|2≤x≤4} | C. | {x|0<x<2或x>4} | D. | {x|0<x≤2或x≥4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$ | B. | $\frac{1}{4}\overrightarrow a+\frac{1}{2}\overrightarrow b$ | C. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$ | D. | $\frac{1}{4}\overrightarrow a-\frac{1}{2}\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 |
| 每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
| 租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 | |
| 每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
| 模型甲 | 估计值$\stackrel{∧}{{y}_{i}}$(1) | 2.4 | 2.1 | 1.6 | ||
| 残差$\stackrel{∧}{{e}_{i}}$(1) | 0 | -0.1 | 0.1 | |||
| 模型乙 | 估计值$\stackrel{∧}{{y}_{i}}$ (2) | 2.3 | 2 | 1.9 | ||
| 残差$\stackrel{∧}{{e}_{i}}$(2) | 0.1 | 0 | 0 | |||
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com