精英家教网 > 高中数学 > 题目详情
16.若函数f(x)=$\frac{lg(\sqrt{a+9{x}^{2}}-3x)}{x}$的图象关于y轴对称,则a的值为1.

分析 利用函数图象的对称性得出f(-x)=f(x),利用特殊值f(-1)=f(1)代入求解即可.

解答 解:∵函数f(x)=$\frac{lg(\sqrt{a+9{x}^{2}}-3x)}{x}$的图象关于y轴对称
∴f(-x)=f(x)
即x=1时f(-1)=f(1)
-lg($\sqrt{a+9}$+3)=lg($\sqrt{a+9}$-3)
$\frac{1}{\sqrt{a+9}+3}$=$\sqrt{a+9}$-3,
(a+9)=10
a=1
故答案为:1

点评 本题简单的考查了函数的性质,与函数图象,关键是判断出是偶函数即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知A(1,2),B(-2,1),以AB为直径的圆的方程是(x+0.5)2+(y-1.5)2=2.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若方程${x^2}+\frac{y^2}{m}=4$表示焦点在x轴上的椭圆,则实数m的取值范围是(  )
A.(0,1)B.(0,2)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.三棱锥P-ABC,底面是边长为2的正三角形,平面PBC⊥平面ABC,PB=PC=2,D为PA上一点,AD=2DP,O为底面三角形中心.
(1)求证:DO∥平面PBC;
(2)求证:BD⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax2+3,若$\lim_{△x→0}\frac{f(1+△x)-f(1)}{△x}=2$,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,AB是⊙O的直径,点P是⊙O圆周上异于A,B的一点,AD⊥⊙O所在的平面PAB,四边形ABCD是边长为2的正方形,连结PA,PB,PC,PD.
(1)求证:平面PBC⊥平面PAD;
(2)若PA=1,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=1-$\frac{a}{{2}^{x}+1}$(a为常数)为R上的奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)对x∈(0,1],不等式s•f(x)≥2x-1恒成立,求实数s的取值范围;
(Ⅲ)令g(x)=$\frac{2}{1-f(x)}$,若关于x的方程g(2x)-mg(x)=0有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤1}\\{2x,x>1}\end{array}\right.$讨论f(x)在x=1处的极限是否存在.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.命题p:直线y=kx+3与圆x2+y2=1相交于A,B两点;命题q:曲线$\frac{{x}^{2}}{k-6}$-$\frac{{y}^{2}}{k}$=1表示焦点在y轴上的双曲线,若p∧q为真命题,求实数k的取值范围.

查看答案和解析>>

同步练习册答案