精英家教网 > 高中数学 > 题目详情
19.已知A(1,2),B(-2,1),以AB为直径的圆的方程是(x+0.5)2+(y-1.5)2=2.5.

分析 根据圆心即AB的中点(-0.5,1.5),半径为$\frac{1}{2}$AB=$\frac{\sqrt{10}}{2}$,从而得到以AB为直径的圆的方程.

解答 解:由题意可得,圆心即AB的中点(-0.5,1.5),半径为$\frac{1}{2}$AB=$\frac{\sqrt{10}}{2}$,
故以AB为直径的圆的方程为 (x+0.5)2+(y-1.5)2=2.5,
故答案为:(x+0.5)2+(y-1.5)2=2.5.

点评 本题主要考查求圆的标准方程,求出圆心和半径,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=1,若an+1+an=$\frac{1}{{a}_{n+1}-{a}_{n}}$,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知平面直角坐标系xOy中的一个椭圆,它的中心在原点,焦点在x轴上,且短轴长为2,离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)若P是椭圆上的动点,点A(1,$\frac{1}{2}$),求线段PA中点M的轨迹方程;
(Ⅲ)过点Q(0,1)的直线l交椭圆于不相同的两点,当弦长为$\frac{4\sqrt{2}}{3}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=$\left\{\begin{array}{l}{x+1,-1≤x≤\frac{π}{2}}\\{sinx,\frac{π}{2}<x≤2π}\end{array}\right.$.
(1)求f(x)的定义域,并指出它的分段点;
(2)求f(0),f($\frac{π}{2}$),f($\frac{3π}{2}$),f(2π);
(3)画出它的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Rt△AOB中,|OB|=3,|斜边AB|=5,点P是△AOB内切圆上一点,求以|PA|,|PB|,|PO|为直径的三个圆面积之和的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=2k+$\sqrt{x+4}$,若曲线y=cosx上(存在点(x0,y0),使f(f(y0))=y0,则k的取值范围是(  )
A.[--4,$\frac{\sqrt{3}+1}{2}$]B.[-$\frac{\sqrt{3}+1}{2}$,$\frac{1-\sqrt{5}}{2}$]C.[-$\frac{\sqrt{3}+1}{2}$,$\frac{1+\sqrt{5}}{2}$]D.[-4,$\frac{1+\sqrt{5}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线l:y=kx-1与曲线C:y=-$\sqrt{1-{x}^{2}}$+1有2个不同的公共点,则直线l的斜率的取值范围为(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(-∞,-$\sqrt{3}$)D.[-2,$-\sqrt{3}$)∪($\sqrt{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,且BA⊥AC,AC=4,AB=3,二面角B-A1C1-B1的余弦值为$\frac{3}{5}$,E在线段CC1上运动(含端点),F在线段AB上运动(含端点).
(1)若E,F运动到C1E=1,BF=$\frac{3}{4}$时,求证:EF∥平面A1C1B;
(2)若E,F在运动过程中,始终保持$\frac{CE}{AF}$=2,求此种情形下直线EF与平面A1C1B所成角的正弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\frac{lg(\sqrt{a+9{x}^{2}}-3x)}{x}$的图象关于y轴对称,则a的值为1.

查看答案和解析>>

同步练习册答案