精英家教网 > 高中数学 > 题目详情
13.命题?x∈R,ex-x-1≥0的否定是(  )
A.?x∈R,ex-x-1≤0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0
C.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0D.?x0∈R,e${\;}^{{x}_{0}}$-x0-1<0

分析 根据含有量词的命题的否定为:将任意改为存在,结论否定,即可写出命题的否定.

解答 解:由题意命题?x∈R,ex-x-1≥0的否定是?x0∈R,e${\;}^{{x}_{0}}$-x0-1<0,
故选:D.

点评 本题的考点是命题的否定,主要考查含量词的命题的否定形式:将任意与存在互换,结论否定即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.(1-$\frac{1}{{x}^{2}}$)(1+x)6展开式中x2的系数为(  )
A.-15B.0C.15D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.公差为d的等差数列{an},若a1=d≠0,且其前四项和S4=am,则m=(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.复数z满足|z-4i|-|z+4i|=4,则z在复平面上对应点的轨迹方程为$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{12}=1$(y<0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.等比数列{an}的各项都是正数,2a5,a4,4a6成等差数列,且满足${a_4}=4{a_3}^2$,数列{bn}的前n项和为${S_n}=\frac{{(n+1){b_n}}}{2}$,n∈N*,且b1=1
(1)求数列{an},{bn}的通项公式
(2)设${c_n}=\frac{{{b_{2n+5}}}}{{{b_{2n+1}}{b_{2n+3}}}}{a_n}$,n∈N*,{Cn}前n项和为$\sum_{k=1}^n{c_k}$,求证:$\sum_{k=1}^n{{c_k}<\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:-1≤x≤1,q:a≤ex≤b,其中a,b为实数.
(1)若p是q的充要条件,求ab的值;
(2)若a=1,b=e2,且p,q中恰有一个为真命题,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,半径为1的扇形AOB的圆心角为120°,点C在$\widehat{AB}$上,且∠COA=30°,若$\overrightarrow{OC}$=$λ\overrightarrow{OA}$$+μ\overrightarrow{OB}$,则λ+μ$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x的反函数为y=g(x),
(Ⅰ)若函数y=g(4-bx)在[1,+∞)上有最小值为3,求b的值;
(Ⅱ)若函数y=g(x)的图象经过点(6,a+1),且关于x的方程2ax-9x-m=0在区间[-1,1]上有解,求m的取值范围;
(Ⅲ)若函数h(x)=9x-k•3x+1(x≤0)有最小值-1,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.假设佛罗里达州某镇有居民2400人,其中白人有1200人,黑人800人,华人200人,其他有色人种200人,为了调查奥马巴政府在该镇的支持率,现从中选取一个容量为120人的样本,按分层抽样,白人、黑人、华人、其他有色人种分别抽取的人数(  )
A.60,40,10,10B.65,35,10,10C.60,30,15,15D.55,35,15,15

查看答案和解析>>

同步练习册答案