精英家教网 > 高中数学 > 题目详情
8.等比数列{an}的各项都是正数,2a5,a4,4a6成等差数列,且满足${a_4}=4{a_3}^2$,数列{bn}的前n项和为${S_n}=\frac{{(n+1){b_n}}}{2}$,n∈N*,且b1=1
(1)求数列{an},{bn}的通项公式
(2)设${c_n}=\frac{{{b_{2n+5}}}}{{{b_{2n+1}}{b_{2n+3}}}}{a_n}$,n∈N*,{Cn}前n项和为$\sum_{k=1}^n{c_k}$,求证:$\sum_{k=1}^n{{c_k}<\frac{1}{3}}$.

分析 (1)设公比为q,利用等差数列的性质,求得公比q,根据等比数列的等比中项的性质,即可求得a1,求得数列{an}的通项公式,由bn=Sn-Sn-1,化简整理即可求得{bn}的通项公式;
(2)由(1)求得数列{cn}的通项公式,采用“裂项法”即可求得数列{cn}前n项和,即可证明不等式成立.

解答 解:(1)设等比数列{an}的公比为q,由题意可知2a4=2a5+4a6,即a4=a4q+2a4q2
由an>0,则2q2+q-1=0,解得:q=$\frac{1}{2}$,或q=-1(舍去),
a4=4a32=4a2a4,则a2=$\frac{1}{4}$,
∴a1=$\frac{1}{2}$,
等比数列{an}通项公式an=($\frac{1}{2}$)n
当n≥2时,bn=Sn-Sn-1=$\frac{(n+1){b}_{n}}{2}$-$\frac{n{b}_{n-1}}{2}$,
整理得:$\frac{{b}_{n}}{n}$=$\frac{{b}_{n-1}}{n-1}$,
∴数列{$\frac{{b}_{n}}{n}$}是首项为$\frac{{b}_{1}}{1}$=1的常数列,
则$\frac{{b}_{n}}{n}$=1,则bn=n,n∈N*,
数列{bn}的通项公式bn=n,n∈N*;
(2)证明:由(1)可知:cn=$\frac{{b}_{2n+5}}{{b}_{2n+1}{b}_{2n+3}}$an
=$\frac{2n+5}{(2n+1)(2n+3)}$•$\frac{1}{{2}^{n}}$=$\frac{1}{(2n+1)•{2}^{n-1}}$-$\frac{1}{(2n+3)•{2}^{n}}$,
∴$\sum_{n=1}^{n}$ck=c1+c2+…+cn=($\frac{1}{3×{2}^{0}}$-$\frac{1}{5×{2}^{1}}$)+($\frac{1}{5×{2}^{1}}$-$\frac{1}{7×{2}^{2}}$)+…+$\frac{1}{(2n+1)•{2}^{n-1}}$-$\frac{1}{(2n+3)•{2}^{n}}$
=$\frac{1}{3}$-$\frac{1}{(2n+3)•{2}^{n}}$<$\frac{1}{3}$.

点评 本题考查等比数列的通项公式,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=mx2-mx-1.若对一切实数x,f(x)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的图象如图所示,则函数f(x)的单调递减区间为(  )
A.$(kπ+\frac{π}{2},kπ+\frac{3π}{2}),k∈Z$B.$(2kπ-\frac{π}{2},2kπ),k∈Z$
C.$(2kπ+\frac{π}{2},2kπ+π),k∈Z$D.$(kπ-\frac{π}{2},kπ),k∈Z$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若b=1,c=$\sqrt{3}$,∠C=$\frac{2π}{3}$,则a等于(  )
A.2B.$\sqrt{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)(-8-7i)(-3i);
(2)(4-3i)(-5-4i);
(3)(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)(1+i);
(4)($\frac{\sqrt{3}}{2}$i-$\frac{1}{2}$)(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题?x∈R,ex-x-1≥0的否定是(  )
A.?x∈R,ex-x-1≤0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0
C.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0D.?x0∈R,e${\;}^{{x}_{0}}$-x0-1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数z满足z=(1+i)(($\frac{7}{2}$$+\frac{1}{2}$i)(i为虚数单位),则z的模为(  )
A.$\sqrt{5}$B.5C.2$\sqrt{6}$D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在梯形ABCD中,$\overrightarrow{DC}$=2$\overrightarrow{AB}$=4$\overrightarrow{PC}$,且$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λ+μ的值为(  )
A.1B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知f(x)是偶函数,x≥0时,f(x)=-2x2+4x,求x<0时f(x)的解析式.
(2)已知函数f(x)=x2+3x-5,x∈[t,t+1],若f(x)的最小值为h(t),写出h(t)的表达式.

查看答案和解析>>

同步练习册答案