【题目】选修4-4:坐标系与参数方程
已知点
在椭圆
上,将射线
绕原点
逆时针旋转
,所得射线
交直线
于点
.以
为极点,
轴正半轴为极轴建立极坐标系.
(1)求椭圆
和直线
的极坐标方程;
(2)证明::
中,斜边
上的高
为定值,并求该定值.
科目:高中数学 来源: 题型:
【题目】在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有7个球,其中4个白球,3个红球,从袋中任意取出2个球,求下列事件的概率:
(1)
取出的2个球都是白球;
(2)
取出的2个球中1个是白球,另1个是红球.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
和曲线
的极坐标方程;
(2)已知射线
(
),将射线
顺时针方向旋转
得到
:
,且射线
与曲线
交于两点,射线
与曲线
交于
两点,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com