10£®ÏÂÁнáÂÛÖУ¬ÕýÈ·µÄÓУ¨¡¡¡¡£©
¢Ù²»´æÔÚʵÊýk£¬Ê¹µÃ·½³Ìxlnx-$\frac{1}{2}$x2+k=0ÓÐÁ½¸ö²»µÈʵ¸ù£»
¢ÚÒÑÖª¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒa2+b2=2c2£¬Ôò½ÇCµÄ×î´óֵΪ$\frac{¦Ð}{6}$£»
¢Ûº¯Êýy=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$Óëy=lntan$\frac{x}{2}$ÊÇͬһº¯Êý£»
¢ÜÔÚÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬×óÓÒ¶¥µã·Ö±ðΪA£¬B£¬ÈôPΪÍÖÔ²ÉÏÈÎÒâÒ»µã£¨²»Í¬ÓÚA£¬B£©£¬ÔòÖ±ÏßPAÓëÖ±ÏßPBбÂÊÖ®»ýΪ¶¨Öµ£®
A£®¢Ù¢ÜB£®¢Ù¢ÛC£®¢Ù¢ÚD£®¢Ú¢Ü

·ÖÎö ¢Ù£¬º¯Êýf£¨x£©=xlnx-$\frac{1}{2}$x2ÔÚ¶¨ÒåÓòÄÚµ¥µ÷£¬²»´æÔÚʵÊýk£¬Ê¹µÃ·½³Ìxlnx-$\frac{1}{2}$x2+k=0ÓÐÁ½¸ö²»µÈʵ¸ù£»
¢Ú£¬a2+b2=2c2¡Ý2ab£¬cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\frac{{c}^{2}}{2ab}¡Ý\frac{1}{2}$Ôò½ÇCµÄ×î´óֵΪ$\frac{¦Ð}{3}$£»
¢Û£¬º¯Êýy=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$Óëy=lntan$\frac{x}{2}$µÄ¶¨ÒåÓò²»Í¬£¬²»ÊÇͬһº¯Êý£»
¢Ü£¬ÉèA£¨-a£¬0£©£¬B£¨a£¬0£©£¬P£¨m£¬n£©£¬Ôòb2m2+a2n2=a2b2⇒a2n2=b2£¨a2-m2£©⇒Ö±ÏßPAÓëÖ±ÏßPBбÂÊÖ®»ýΪ$\frac{n}{m+a}•\frac{n}{m-a}=\frac{{n}^{2}}{{m}^{2}-{a}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$£¨¶¨Öµ£©£®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬º¯Êýf£¨x£©=xlnx-$\frac{1}{2}$x2ÔÚ¶¨ÒåÓòÄÚµ¥µ÷£¬²»´æÔÚʵÊýk£¬Ê¹µÃ·½³Ìxlnx-$\frac{1}{2}$x2+k=0ÓÐÁ½¸ö²»µÈʵ¸ù£¬ÕýÈ·£»
¶ÔÓÚ¢Ú£¬¡ßa2+b2=2c2£¬¡àa2+b2=2c2¡Ý2ab£¬cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\frac{{c}^{2}}{2ab}¡Ý\frac{1}{2}$£¬Ôò½ÇCµÄ×î´óֵΪ$\frac{¦Ð}{3}$£¬¹Ê´í£»
¶ÔÓÚ¢Û£¬º¯Êýy=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$Óëy=lntan$\frac{x}{2}$µÄ¶¨ÒåÓò²»Í¬£¬²»ÊÇͬһº¯Êý£¬¹Ê´í£»
¶ÔÓڢܣ¬ÉèA£¨-a£¬0£©£¬B£¨a£¬0£©£¬P£¨m£¬n£©£¬Ôòb2m2+a2n2=a2b2⇒a2n2=b2£¨a2-m2£©⇒Ö±ÏßPAÓëÖ±ÏßPBбÂÊÖ®»ýΪ$\frac{n}{m+a}•\frac{n}{m-a}=\frac{{n}^{2}}{{m}^{2}-{a}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$£¨¶¨Öµ£©£¬¹ÊÕýÈ·£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁËÃüÌâÕæ¼ÙµÄÅж¨£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖª$f£¨x£©=-\frac{1}{2}{x^2}+6x-8lnx$ÔÚ[m£¬m+1]Éϲ»µ¥µ÷£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨1£¬2£©¡È£¨3£¬4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚ¶àÃæÌåABCDPEÖУ¬ËıßÐÎABCDºÍCDPE¶¼ÊÇÖ±½ÇÌÝÐΣ¬AB¡ÎDC£¬PE¡ÎDC£¬AD¡ÍDC£¬PD¡ÍÆ½ÃæABCD£¬AB=PD=DA=2PE£¬CD=3PE£¬FÊÇCEµÄÖе㣮
£¨1£©ÇóÖ¤£ºBF¡ÎÆ½ÃæADP£»
£¨2£©Çó¶þÃæ½ÇB-DF-PµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Îª´´½¨È«¹úÎÄÃ÷³ÇÊУ¬Ä³ÇøÏò¸÷ÊÂÒµÐÐÕþµ¥Î»Õ÷¼¯¡°ÎÄÃ÷¹ýÂí·¡±ÒåÎñ¶½µ¼Ô±£®´Ó·ûºÏÌõ¼þµÄ600ÃûÖ¾Ô¸ÕßÖÐËæ»ú³éÈ¡100Ãû£¬°´ÄêÁä×÷·Ö×éÈçÏ£º[20£¬25£©£¬[25£¬30£©£¬[30£¬35£©£¬[35£¬40£©£¬[40£¬45]£¬²¢µÃµ½ÈçÏÂÆµÂÊ·Ö²¼Ö±·½Í¼£®
£¨¢ñ£©ÇóͼÖÐxµÄÖµ£¬²¢¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼Í³¼ÆÕâ600ÃûÖ¾Ô¸ÕßÖÐÄêÁäÔÚ[30.40£©µÄÈËÊý£»
£¨¢ò£©ÔÚ³éÈ¡µÄ100ÃûÖ¾Ô¸ÕßÖа´ÄêÁä·Ö²ã³éÈ¡10Ãû²Î¼ÓÇøµçÊǪ́¡°ÎÄÃ÷°éÄãÐС±½ÚÄ¿Â¼ÖÆ£¬ÔÙ´ÓÕâ10ÃûÖ¾Ô¸ÕßÖÐËæ»úѡȡ3Ãûµ½ÏÖ³¡·ÖÏíȰµ¼ÖÆÖ¹ÐÐÈË´³ºìµÆµÄ¾­Àú£¬¼ÇÕâ3ÃûÖ¾Ô¸ÕßÖÐÄêÁä²»µÍÓÚ35ËêµÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¹ýÅ×ÎïÏßG£ºy2=2px£¨p£¾0£©½¹µãFµÄÖ±ÏßlÓëÅ×ÎïÏßG½»ÓÚM¡¢NÁ½µã£¨MÔÚxÖáÉÏ·½£©£¬Âú×ã$\overrightarrow{MF}=3\overrightarrow{FN}$£¬$|{MN}|=\frac{16}{3}$£¬ÔòÒÔMΪԲÐÄÇÒÓëÅ×ÎïÏß×¼ÏßÏàÇеÄÔ²µÄ±ê×¼·½³ÌΪ£¨¡¡¡¡£©
A£®${£¨{x-\frac{1}{3}}£©^2}+{£¨{y-\frac{{2\sqrt{3}}}{3}}£©^2}=\frac{16}{3}$B£®${£¨{x-\frac{1}{3}}£©^2}+{£¨{y-\frac{{\sqrt{3}}}{3}}£©^2}=\frac{16}{3}$
C£®${£¨{x-3}£©^2}+{£¨{y-2\sqrt{3}}£©^2}=16$D£®${£¨{x-3}£©^2}+{£¨{y-\sqrt{3}}£©^2}=16$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÅ×ÎïÏßy2=4x£¬¹ý½¹µãF×÷Ö±ÏßÓëÅ×ÎïÏß½»ÓÚµãA£¬B£¨µãAÔÚxÖáÏ·½£©£¬µãA1ÓëµãA¹ØÓÚxÖá¶Ô³Æ£¬ÈôÖ±ÏßABбÂÊΪ1£¬ÔòÖ±ÏßA1BµÄбÂÊΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{3}$B£®$\sqrt{3}$C£®$\frac{\sqrt{2}}{2}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=x3-x+2$\sqrt{x}$£®
£¨¢ñ£©Çóº¯Êýy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Áîg£¨x£©=$\frac{a{x}^{2}+ax}{f£¨x£©-2\sqrt{x}}$+lnx£¬Èôº¯Êýy=g£¨x£©ÔÚ£¨e£¬+¡Þ£©ÄÚÓм«Öµ£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬¶ÔÈÎÒât¡Ê£¨1£¬+¡Þ£©£¬s¡Ê£¨0£¬1£©£¬ÇóÖ¤£º$g£¨t£©-g£¨s£©£¾e+2-\frac{1}{e}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÔÚ¡÷ABCÖÐÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬cÇÒ$\frac{a-c}{a-b}=\frac{sinA+sinB}{sin£¨A+B£©}$£®
£¨¢ñ£©Çó½ÇBµÄÖµ£»
£¨¢ò£©Èô¡÷ABCµÄÍâ½ÓÔ²°ë¾¶Îª1£¬Çó¡÷ABCÃæ»ýSµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ò»´üÖÐÓÐ7¸ö´óСÏàͬµÄСÇò£¬ÆäÖÐÓÐ2¸öºìÇò£¬3¸ö»ÆÇò£¬2¸öÀ¶Çò£¬´ÓÖÐÈÎÈ¡3¸öСÇò£®
£¨I£©Çóºì¡¢»Æ¡¢À¶ÈýÖÖÑÕÉ«µÄСÇò¸÷È¡1¸öµÄ¸ÅÂÊ£»
£¨II£©ÉèX±íʾȡµ½µÄÀ¶É«Ð¡ÇòµÄ¸öÊý£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸