精英家教网 > 高中数学 > 题目详情
5.已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足$\overrightarrow{MF}=3\overrightarrow{FN}$,$|{MN}|=\frac{16}{3}$,则以M为圆心且与抛物线准线相切的圆的标准方程为(  )
A.${({x-\frac{1}{3}})^2}+{({y-\frac{{2\sqrt{3}}}{3}})^2}=\frac{16}{3}$B.${({x-\frac{1}{3}})^2}+{({y-\frac{{\sqrt{3}}}{3}})^2}=\frac{16}{3}$
C.${({x-3})^2}+{({y-2\sqrt{3}})^2}=16$D.${({x-3})^2}+{({y-\sqrt{3}})^2}=16$

分析 求出直线l的斜率,可得直线方程,与抛物线方程联立,利用|MN|,求出p,可得M的坐标,即可求出以M为圆心且与抛物线准线相切的圆的标准方程.

解答 解:如图,过点N作NE⊥MM′,由抛物线的定义,|MM′|=|MF|,|NN′|=|NF|.
解三角形EMN,得∠EMF=$\frac{π}{3}$,所以直线l的斜率为$\sqrt{3}$,
其方程为y=$\sqrt{3}$(x-$\frac{p}{2}$),
与抛物线方程联立可得3x2-5px+$\frac{3}{4}$p2=0,
∴x1+x2=$\frac{5}{3}$p,
∴|MN|=$\frac{8}{3}$p=$\frac{16}{3}$,
∴p=2,
∴M(3,2$\sqrt{3}$),r=4,
∴圆的标准方程为(x-3)2+(y-2$\sqrt{3}$)2=16.
故选:C.

点评 本题主要考查抛物线定义以及抛物线的性质,以M为圆心且与抛物线准线相切的圆的标准方程的求法,考查转化思想以及数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}-1}$,其中x∈[-2,1]的值域为[$\frac{1}{8}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和${S_n}={n^2}+kn$,其中k为常数,a1,a4,a13成等比数列.
(1)求k的值及数列{an}的通项公式;
(2)设${b_n}=\frac{4}{{({a_n}+1)({a_{n+1}}+3)}}$,数列{bn}的前n项和为Tn,证明:${T_n}<\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={-1,0},N=(y|y=1-cos$\frac{π}{2}$x,x∈M),则集合M∩N的真子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=mln(x+1)-nx在点(1,f(1))处的切线与y轴垂直,且$f'(2)=-\frac{1}{3}$,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的单调区间;
(Ⅱ)设g(x)=-x2+2x,确定非负实数a的取值范围,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列结论中,正确的有(  )
①不存在实数k,使得方程xlnx-$\frac{1}{2}$x2+k=0有两个不等实根;
②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为$\frac{π}{6}$;
③函数y=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$与y=lntan$\frac{x}{2}$是同一函数;
④在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),左右顶点分别为A,B,若P为椭圆上任意一点(不同于A,B),则直线PA与直线PB斜率之积为定值.
A.①④B.①③C.①②D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有(  )
A.6种B.24种C.30种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A、B、C对边分别为a、b、c,已知a=4,B=$\frac{π}{3}$,S△ABC=6$\sqrt{3}$,则b=$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U=N*,集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为(  )
A.{2}B.{4,6}C.{1,3,5}D.{2,4,6}

查看答案和解析>>

同步练习册答案