精英家教网 > 高中数学 > 题目详情
13.已知集合M={-1,0},N=(y|y=1-cos$\frac{π}{2}$x,x∈M),则集合M∩N的真子集的个数是(  )
A.1B.2C.3D.4

分析 不等式化简集合N,取交集求出M∩N,则其子集个数可求.

解答 解:因为N={0.1},所以M∩N={0,1},其真子集的个数是3.
故选C.

点评 本题考查了真子集的概念,考查了交集及其运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知抛物线C:y=2x2和直线l:y=kx+1,O为坐标原点.
(1)求证:l与C必有两交点;
(2)设l与C交于A,B两点,且直线OA和OB斜率之和为1,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在如图所示的圆柱O1O2中,等腰梯形ABCD内接于下底面圆O1,AB∥CD,且AB为圆O1的直径,EA和FC都是圆柱O1O2的母线,M为线段EF的中点.
(1)求证:MO1∥平面BCF;
(2)已知BC=1,∠ABC=60°,且直线AF与平面ABC所成的角为30°,求平面MAB与平面EAD所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.
(1)求证:BF∥平面ADP;
(2)求二面角B-DF-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知蝴蝶(体积忽略不计)在一个长、宽、高分别为5,4,3的长方体内自由飞行,若蝴蝶在飞行过程中始终保持与长方体的6个面的距离均大于1,称其为“安全飞行”,则蝴蝶“安全飞行”的概率为(  )
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{π}{45}$D.$\frac{45-π}{45}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为创建全国文明城市,某区向各事业行政单位征集“文明过马路”义务督导员.从符合条件的600名志愿者中随机抽取100名,按年龄作分组如下:[20,25),[25,30),[30,35),[35,40),[40,45],并得到如下频率分布直方图.
(Ⅰ)求图中x的值,并根据频率分布直方图统计这600名志愿者中年龄在[30.40)的人数;
(Ⅱ)在抽取的100名志愿者中按年龄分层抽取10名参加区电视台“文明伴你行”节目录制,再从这10名志愿者中随机选取3名到现场分享劝导制止行人闯红灯的经历,记这3名志愿者中年龄不低于35岁的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足$\overrightarrow{MF}=3\overrightarrow{FN}$,$|{MN}|=\frac{16}{3}$,则以M为圆心且与抛物线准线相切的圆的标准方程为(  )
A.${({x-\frac{1}{3}})^2}+{({y-\frac{{2\sqrt{3}}}{3}})^2}=\frac{16}{3}$B.${({x-\frac{1}{3}})^2}+{({y-\frac{{\sqrt{3}}}{3}})^2}=\frac{16}{3}$
C.${({x-3})^2}+{({y-2\sqrt{3}})^2}=16$D.${({x-3})^2}+{({y-\sqrt{3}})^2}=16$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3-x+2$\sqrt{x}$.
(Ⅰ)求函数y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)令g(x)=$\frac{a{x}^{2}+ax}{f(x)-2\sqrt{x}}$+lnx,若函数y=g(x)在(e,+∞)内有极值,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:$g(t)-g(s)>e+2-\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若圆锥曲线Γ:$\frac{x^2}{m}+\frac{y^2}{5}$=1(m≠0且m≠5)的一个焦点与抛物线y2=8x的焦点重合,则实数m=(  )
A.9B.7C.1D.-1

查看答案和解析>>

同步练习册答案