精英家教网 > 高中数学 > 题目详情
8.已知蝴蝶(体积忽略不计)在一个长、宽、高分别为5,4,3的长方体内自由飞行,若蝴蝶在飞行过程中始终保持与长方体的6个面的距离均大于1,称其为“安全飞行”,则蝴蝶“安全飞行”的概率为(  )
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{π}{45}$D.$\frac{45-π}{45}$

分析 蝴蝶的安全飞行范围为:以这个长方体的中心为中心且长、宽、高分别为3,2,1的长方体内,分别求出体积,即可得出安全飞行的概率.

解答 解:由题知蝴蝶的安全飞行范围为:
以这个长方体的中心为中心且长、宽、高分别为3,2,1的长方体内.
这个小长方体的体积为6,
大长方体的体积为60,
故安全飞行的概率为p=$\frac{1}{10}$.
故选A.

点评 本题考查几何概型概率的求法,解题时要认真审题,注意蝴蝶的安全飞行范围为:以这个长方体的中心为中心且长、宽、高分别为3,2,1的长方体内.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列命题正确的是(  )
A.y=x+$\frac{1}{x}$的最小值为2
B.命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”
C.“x>2“是“$\frac{1}{x}$<$\frac{1}{2}$”的充要条件
D.?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义域为R的函数f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{1-(\frac{1}{2})^{x},x≥0}\end{array}\right.$,若关于x的函数y=3f2(x)+2bf(x)+1有6个不同的零点,则实数b的取值范围是(  )
A.(-2,-$\sqrt{3}$)B.(-2,0)C.(-3,-$\sqrt{3}$)D.(-$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和${S_n}={n^2}+kn$,其中k为常数,a1,a4,a13成等比数列.
(1)求k的值及数列{an}的通项公式;
(2)设${b_n}=\frac{4}{{({a_n}+1)({a_{n+1}}+3)}}$,数列{bn}的前n项和为Tn,证明:${T_n}<\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从区间(0,1)中任取两个数,作为直角三角形两直角边的长,则所得的两个数列使得斜边长不大于1的概率是(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={-1,0},N=(y|y=1-cos$\frac{π}{2}$x,x∈M),则集合M∩N的真子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=mln(x+1)-nx在点(1,f(1))处的切线与y轴垂直,且$f'(2)=-\frac{1}{3}$,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的单调区间;
(Ⅱ)设g(x)=-x2+2x,确定非负实数a的取值范围,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有(  )
A.6种B.24种C.30种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在5×5的表格填上数字,设在第i行第j列所组成的数字为aij,aij∈{0,1},aij=aji(1≤i,j≤5),则表格中共有5个1的填表方法种数为326.

查看答案和解析>>

同步练习册答案