精英家教网 > 高中数学 > 题目详情
2.下列命题正确的是(  )
A.y=x+$\frac{1}{x}$的最小值为2
B.命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”
C.“x>2“是“$\frac{1}{x}$<$\frac{1}{2}$”的充要条件
D.?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x

分析 A,x<0时,y=x+$\frac{1}{x}$≤-2;
B,命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
C,“x>2“时“$\frac{1}{x}$<$\frac{1}{2}$”成立,“$\frac{1}{x}$<$\frac{1}{2}$”时,x>2,或x<0;
D,根据指数函数,对数函数图象可判定?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x;

解答 解:对于A,x<0时,y=x+$\frac{1}{x}$≤-2,故错;
对于B,命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故错;
对于C,“x>2“时“$\frac{1}{x}$<$\frac{1}{2}$”成立,“$\frac{1}{x}$<$\frac{1}{2}$”时,x>2,或x<0,故错;
对于D,根据指数函数,对数函数图象可判定?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x,正确;
故选:D.

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=aex-2x-2a,且a∈[1,2],设函数f(x)在区间[0,ln2]上的最小值为m,则m的取值范围是(  )
A.[-2,-2ln2]B.[-2,-$\frac{1}{e}$]C.[-2ln2,-1]D.[-1,-$\frac{1}{e}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.阅读材料:空间直角坐标系O-xyz中,过点P(x0,y0,z0)且一个法向量为$\overrightarrow{n}$=(a,b,c)的平面α的方程为a(x-x0)+b(y-y0)+c(z-z0)=0;过点P(x0,y0,z0)且个方向向量为$\overrightarrow{d}$=(u,v,w)(uvw≠0)的直线l的方程为$\frac{x-{x}_{0}}{u}$=$\frac{y-{y}_{0}}{v}$=$\frac{z-{z}_{0}}{w}$,阅读上面材料,并解决下面问题:已知平面α的方程为3x-5y+z-7=0,直线l是两个平面x-3y+7=0与4y+2z+1=0的交线,则直线l与平面α所成角的大小为(  )
A.arcsin$\frac{\sqrt{10}}{35}$B.arcsin$\frac{\sqrt{7}}{5}$C.arcsin$\frac{\sqrt{7}}{15}$D.arcsin$\frac{\sqrt{14}}{55}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.满足条件{1,3}∪A={1,3,5}所有集合A的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列关于命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”
B.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
C.若命题p:?n∈N,2n>1000,则¬p:?n∈N,2n>1000
D.命题“?x∈(-∞,0),2x<3x”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线C:y=2x2和直线l:y=kx+1,O为坐标原点.
(1)求证:l与C必有两交点;
(2)设l与C交于A,B两点,且直线OA和OB斜率之和为1,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:?x∈[-$\frac{π}{6}$,$\frac{π}{3}$],使函数f(x)=$\sqrt{3}$sinx+cosx-m有零点,q:函数y=$(\frac{1}{3})^{2{x}^{2}-mx+2}$在[2,+∞)上单调递减.
(1)若p∨q为假命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥面ABCD,PA=AD=4,BD=4$\sqrt{2}$,E为PD的中点.
(1)求证:BD⊥面PAC;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知蝴蝶(体积忽略不计)在一个长、宽、高分别为5,4,3的长方体内自由飞行,若蝴蝶在飞行过程中始终保持与长方体的6个面的距离均大于1,称其为“安全飞行”,则蝴蝶“安全飞行”的概率为(  )
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{π}{45}$D.$\frac{45-π}{45}$

查看答案和解析>>

同步练习册答案