精英家教网 > 高中数学 > 题目详情
7.如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥面ABCD,PA=AD=4,BD=4$\sqrt{2}$,E为PD的中点.
(1)求证:BD⊥面PAC;
(2)求二面角E-AC-D的余弦值.

分析 (1)推导出AC⊥BD,PA⊥BD,由此能证明BD⊥面PAC.
(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出二面角E-AC-D的余弦值.

解答 证明:(1)∵棱锥P-ABCD的底面ABCD是矩形,PA⊥面ABCD,
∴AC⊥BD,PA⊥BD,
∵AC∩PA=A,∴BD⊥面PAC.
解:(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
∵PA=AD=4,BD=4$\sqrt{2}$,E为PD的中点,
∴A(0,0,0),P(0,0,4),D(0,4,0),E(0,2,2),C(4,4,0),
$\overrightarrow{AE}$=(0,2,2),$\overrightarrow{AC}$=(4,4,0),
设平面AEC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=2y+2z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=4x+4y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,1),
平面ACD的法向量$\overrightarrow{m}$=(0,0,1),
设二面角E-AC-D的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
∴二面角E-AC-D的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查线面垂直的证明,考查线面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知三棱椎S-ABC的各顶点都在一个球面上,球心O在AB上,SO⊥底面ABC,球的体积与三棱锥体积之比是4π,AC=$\sqrt{2}$,则该球的表面积等于(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题正确的是(  )
A.y=x+$\frac{1}{x}$的最小值为2
B.命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”
C.“x>2“是“$\frac{1}{x}$<$\frac{1}{2}$”的充要条件
D.?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}-1}$,其中x∈[-2,1]的值域为[$\frac{1}{8}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)={log_2}({x^2}-4)$的单调递增区间为(  )
A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log2$\frac{1+x}{1-x}$;
(1)解方程f(x)=1;
(2)设x∈(-1,1),a∈(1,+∞),证明:$\frac{ax-1}{a-x}$∈(-1,1),且f($\frac{ax-1}{a-x}$)-f(x)=-f($\frac{1}{a}$);
(3)设数列{xn}中,x1∈(-1,1),xn+1=(-1)n+1$\frac{{3{x_n}-1}}{{3-{x_n}}}$,n∈N*,求x1的取值范围,使得x3≥xn对任意n∈N*成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义域为R的函数f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{1-(\frac{1}{2})^{x},x≥0}\end{array}\right.$,若关于x的函数y=3f2(x)+2bf(x)+1有6个不同的零点,则实数b的取值范围是(  )
A.(-2,-$\sqrt{3}$)B.(-2,0)C.(-3,-$\sqrt{3}$)D.(-$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和${S_n}={n^2}+kn$,其中k为常数,a1,a4,a13成等比数列.
(1)求k的值及数列{an}的通项公式;
(2)设${b_n}=\frac{4}{{({a_n}+1)({a_{n+1}}+3)}}$,数列{bn}的前n项和为Tn,证明:${T_n}<\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有(  )
A.6种B.24种C.30种D.36种

查看答案和解析>>

同步练习册答案