精英家教网 > 高中数学 > 题目详情
19.定义域为R的函数f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{1-(\frac{1}{2})^{x},x≥0}\end{array}\right.$,若关于x的函数y=3f2(x)+2bf(x)+1有6个不同的零点,则实数b的取值范围是(  )
A.(-2,-$\sqrt{3}$)B.(-2,0)C.(-3,-$\sqrt{3}$)D.(-$\sqrt{3}$,+∞)

分析 作函数f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{1-(\frac{1}{2})^{x},x≥0}\end{array}\right.$的图象,结合图象可知方程3t2+2bt+1=0有2个不同的且在(0,1)上的实数根,从而解得b的范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{|lg(-x)|,x<0}\\{1-(\frac{1}{2})^{x},x≥0}\end{array}\right.$,作出它的图象如图所示:

关于x的函数y=3f2(x)+2bf(x)+1有6个不同的零点,
则令t=f(x),则关于t的方程3t2+2bt+1=0在(0,1)上有2个不同的解.
即函数g(t)=3t2+2bt+1在(0,1)上有2个不同零点,
故有$\left\{\begin{array}{l}{△={4b}^{2}-12>0}\\{0<-\frac{b}{3}<1}\\{f(0)=1>0}\\{f(1)=3+2b+1>0}\end{array}\right.$,求得-2<b<-$\sqrt{3}$,
故选:A.

点评 本题考查了函数的零点与方程的根的关系应用及数形结合的思想应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.阅读材料:空间直角坐标系O-xyz中,过点P(x0,y0,z0)且一个法向量为$\overrightarrow{n}$=(a,b,c)的平面α的方程为a(x-x0)+b(y-y0)+c(z-z0)=0;过点P(x0,y0,z0)且个方向向量为$\overrightarrow{d}$=(u,v,w)(uvw≠0)的直线l的方程为$\frac{x-{x}_{0}}{u}$=$\frac{y-{y}_{0}}{v}$=$\frac{z-{z}_{0}}{w}$,阅读上面材料,并解决下面问题:已知平面α的方程为3x-5y+z-7=0,直线l是两个平面x-3y+7=0与4y+2z+1=0的交线,则直线l与平面α所成角的大小为(  )
A.arcsin$\frac{\sqrt{10}}{35}$B.arcsin$\frac{\sqrt{7}}{5}$C.arcsin$\frac{\sqrt{7}}{15}$D.arcsin$\frac{\sqrt{14}}{55}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:?x∈[-$\frac{π}{6}$,$\frac{π}{3}$],使函数f(x)=$\sqrt{3}$sinx+cosx-m有零点,q:函数y=$(\frac{1}{3})^{2{x}^{2}-mx+2}$在[2,+∞)上单调递减.
(1)若p∨q为假命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥面ABCD,PA=AD=4,BD=4$\sqrt{2}$,E为PD的中点.
(1)求证:BD⊥面PAC;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=lnx,g(x)=$\frac{m(x+n)}{x+1}$(m>0).
(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;
(2)若对任意x>0,恒有|f(x)|≥|g(x)|成立,求实数n的值及实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在如图所示的圆柱O1O2中,等腰梯形ABCD内接于下底面圆O1,AB∥CD,且AB为圆O1的直径,EA和FC都是圆柱O1O2的母线,M为线段EF的中点.
(1)求证:MO1∥平面BCF;
(2)已知BC=1,∠ABC=60°,且直线AF与平面ABC所成的角为30°,求平面MAB与平面EAD所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=a2lnx+ax(a≠0),g(x)=${∫}_{0}^{x}$2tdt,F(x)=g(x)-f(x).
(1)试讨论F(x)的单调性;
(2)当a>0时,-e2≤F(x)≤1-e在x∈[1,e]恒成立,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知蝴蝶(体积忽略不计)在一个长、宽、高分别为5,4,3的长方体内自由飞行,若蝴蝶在飞行过程中始终保持与长方体的6个面的距离均大于1,称其为“安全飞行”,则蝴蝶“安全飞行”的概率为(  )
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{π}{45}$D.$\frac{45-π}{45}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=2,an+1=2an-1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=n•(an-1),求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案