分析 (1)取PD中点G,连结GF,AG,推导出四边形ABFG是平行四边形,从而AG∥BF,进而能证明BF∥平面ADP.
(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出二面角B-DF-P的余弦值.
解答 证明:(1)
取PD中点G,连结GF,AG,
∵AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点,
∴FG$\underset{∥}{=}$AB,∴四边形ABFG是平行四边形,∴AG∥BF,
∵AG?平面ADP,BF?平面ADP,∴BF∥平面ADP.
解:(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,
设PE=1,则B(2,2,0),D(0,0,0),P(0,0,2),C(0,3,0),E(0,1,2),F(0,2,1),
$\overrightarrow{DB}$=(2,2,0),$\overrightarrow{DF}$=(0,2,1),$\overrightarrow{DP}$=(0,0,2),
设平面BDF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=2x+2y=0}\\{\overrightarrow{n}•\overrightarrow{DF}=2y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,2),
设平面PDF的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DB}=2a+2b=0}\\{\overrightarrow{m}•\overrightarrow{DP}=2c=0}\end{array}\right.$,取a=1,则$\overrightarrow{m}$=(1,-1,0),
设二面角B-DF-P的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{6}•\sqrt{2}}$=$\frac{\sqrt{3}}{3}$.
∴二面角B-DF-P的余弦值为$\frac{\sqrt{3}}{3}$.
点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (0,1) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ①③ | C. | ①② | D. | ②④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com