精英家教网 > 高中数学 > 题目详情
1.如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.
(1)求证:BF∥平面ADP;
(2)求二面角B-DF-P的余弦值.

分析 (1)取PD中点G,连结GF,AG,推导出四边形ABFG是平行四边形,从而AG∥BF,进而能证明BF∥平面ADP.
(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出二面角B-DF-P的余弦值.

解答 证明:(1)取PD中点G,连结GF,AG,
∵AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点,
∴FG$\underset{∥}{=}$AB,∴四边形ABFG是平行四边形,∴AG∥BF,
∵AG?平面ADP,BF?平面ADP,∴BF∥平面ADP.
解:(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,
设PE=1,则B(2,2,0),D(0,0,0),P(0,0,2),C(0,3,0),E(0,1,2),F(0,2,1),
$\overrightarrow{DB}$=(2,2,0),$\overrightarrow{DF}$=(0,2,1),$\overrightarrow{DP}$=(0,0,2),
设平面BDF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=2x+2y=0}\\{\overrightarrow{n}•\overrightarrow{DF}=2y+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,2),
设平面PDF的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DB}=2a+2b=0}\\{\overrightarrow{m}•\overrightarrow{DP}=2c=0}\end{array}\right.$,取a=1,则$\overrightarrow{m}$=(1,-1,0),
设二面角B-DF-P的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{6}•\sqrt{2}}$=$\frac{\sqrt{3}}{3}$.
∴二面角B-DF-P的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若集合A={y|y=x${\;}^{\frac{1}{3}}$},B={x|y=ln(x-1)},则A∩B等于(  )
A.[1,+∞)B.(0,1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log2$\frac{1+x}{1-x}$;
(1)解方程f(x)=1;
(2)设x∈(-1,1),a∈(1,+∞),证明:$\frac{ax-1}{a-x}$∈(-1,1),且f($\frac{ax-1}{a-x}$)-f(x)=-f($\frac{1}{a}$);
(3)设数列{xn}中,x1∈(-1,1),xn+1=(-1)n+1$\frac{{3{x_n}-1}}{{3-{x_n}}}$,n∈N*,求x1的取值范围,使得x3≥xn对任意n∈N*成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,若对任意单位向量$\overrightarrow{e}$,均有|$\overrightarrow{a}$•$\overrightarrow{e}$|+|$\overrightarrow{b}$•$\overrightarrow{e}$|≤$\sqrt{6}$,则当$\overrightarrow{a}$$•\overrightarrow{b}$取最小值时,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为arccos(-$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和${S_n}={n^2}+kn$,其中k为常数,a1,a4,a13成等比数列.
(1)求k的值及数列{an}的通项公式;
(2)设${b_n}=\frac{4}{{({a_n}+1)({a_{n+1}}+3)}}$,数列{bn}的前n项和为Tn,证明:${T_n}<\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和${S_n}={n^2}+kn$,其中k为常数,a6=13.
(1)求k的值及数列{an}的通项公式;
(2)若${b_n}=\frac{2}{{n({a_n}+1)}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={-1,0},N=(y|y=1-cos$\frac{π}{2}$x,x∈M),则集合M∩N的真子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列结论中,正确的有(  )
①不存在实数k,使得方程xlnx-$\frac{1}{2}$x2+k=0有两个不等实根;
②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为$\frac{π}{6}$;
③函数y=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$与y=lntan$\frac{x}{2}$是同一函数;
④在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),左右顶点分别为A,B,若P为椭圆上任意一点(不同于A,B),则直线PA与直线PB斜率之积为定值.
A.①④B.①③C.①②D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若将两个顶点在抛物线y2=4x上,另一个顶点是此抛物线焦点的正三角形的个数记为n,则(  )
A.n=0B.n=1C.n=2D.n≥3

查看答案和解析>>

同步练习册答案