精英家教网 > 高中数学 > 题目详情
9.某校投篮比赛规则如下:选手若能连续命中两次,即停止投篮,晋级下一轮.假设某选手每次命中率都是0.6,且每次投篮结果相互独立,则该选手恰好投篮4次晋级下一轮的概率为(  )
A.$\frac{216}{625}$B.$\frac{108}{625}$C.$\frac{36}{625}$D.$\frac{18}{125}$

分析 根据题意得,该选手第二次不中,第三次和第四次必须投中,由此能求出该选手恰好投篮4次晋级下一轮的概率.

解答 解:根据题意得,该选手第二次不中,
第三次和第四次必须投中,
∴该选手恰好投篮4次晋级下一轮的概率为:
$1×0.4×0.6×0.6=\frac{18}{125}$.
故选:D.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意相互独立事件概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an
(2)若数列{an}为等差数列,且A=1,C=-2.
①设bn=2n•an,求数列{bn}的前n项和;
②设cn=$\frac{{{T_n}-6}}{4^n}$,若不等式cn≥$\frac{m}{8}$对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合M={x∈R|x2-4x<0},集合N={0,4},则M∪N=(  )
A.[0,4]B.[0,4)C.(0,4]D.(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$,则z=2x+y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=-$\sqrt{x+2}$(2≤x≤14),设其值域为集合A,集合B={x|y=lg[kx2+(2k-4)x+k-4],x∈R}.
(1)求集合A;
(2)若A∪B=B,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的三边长分别为5,6,7,点O是△ABC三个内角的角平分线的交点.若BC=7,则点集{P|$\overrightarrow{OP}$=x$\overrightarrow{OB}$+y$\overrightarrow{OC}$,0≤x≤1,0≤y≤1}所表示的区域的面积为(  )
A.$\frac{2\sqrt{6}}{3}$B.$\frac{14\sqrt{6}}{3}$C.4$\sqrt{3}$D.6$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}的公比为$-\frac{1}{2}$,则$\frac{{{a_1}+{a_3}+{a_5}}}{{{a_2}+{a_4}+{a_6}}}$的值是(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)的定义域为D,若同时满足以下两个条件:
①函数f(x)在D内是单调递减函数;
②存在区间[a,b]∈D,使函数f(x)在[a,b]内的值域是[-b,-a].
那么称函数f(x)为“W函数”.
已知函数f(x)=-$\sqrt{x}$-k为“W函数”.实数k的取值范围是(-$\frac{1}{4}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.用二项式定理证明:32n+2-8n-9能被64整除(n∈N).

查看答案和解析>>

同步练习册答案