精英家教网 > 高中数学 > 题目详情
7.已知$(1-x{)^9}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_9}{x^9}$,则|a0|+|a1|+|a2|+…+|a9|=512.

分析 |a0|+|a1|+|a2|+…+|a9|,即(1+x)9展开式的各项系数和,令x=1,可得(1+x)9展开式的各项系数和.

解答 解:已知$(1-x{)^9}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_9}{x^9}$,则|a0|+|a1|+|a2|+…+|a9|,即(1+x)9展开式的各项系数和,
令x=1,可得(1+x)9展开式的各项系数和为|a0|+|a1|+|a2|+…+|a9|=29=512,
故答案为:512.

点评 本题主要考查二项式定理的应用,求展开式的系数和常用的方法是赋值法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{x^2}-6x+3(x>0)\\ 1-2x(x<0)\end{array}$,若f(x)=3,则 x=(  )
A.0,6B.-1,6C.-1,0D.-1,0,6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x>0,若y=x-2,则x+y的最小值是(  )
A.$\frac{3\root{3}{2}}{2}$B.$\frac{2\root{3}{3}}{3}$C.$\frac{3}{2}$$\sqrt{3}$D.$\frac{2}{3}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sin2x+sinx+cosx,以下说法中不正确的是(  )
A.f(x)周期为2πB.f(x)最小值为-$\frac{5}{4}$
C.f(x)在区间[0,$\frac{π}{2}$]单调递增D.f(x)关于点x=$\frac{π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求值:
(1)${({0.064})^{-\frac{1}{3}}}-{({-\frac{5}{9}})^0}+{[{{{({-2})}^3}}]^{-\frac{4}{3}}}+{16^{-0.75}}$;
(2)设3x=4y=36,求$\frac{2}{x}+\frac{1}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{e^x}{{a{x^2}+bx+1}}$,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函数f(x)的单调区间;
(Ⅱ)若a=0,且当x≥0时,f(x)≥1总成立,求实数b的取值范围;
(Ⅲ)若a>0,b=0,若f(x)存在两个极值点x1,x2,求证;f(x1)+f(x2)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\frac{e^x}{{a{x^2}+bx+1}}$,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函数f(x)的单调区间;
(Ⅱ)若a=0,且当x≥1时,f(x)≥1总成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某高中计划从全校学生中按年级采用分层抽样方法抽取20名学生进行心理测试,其中高三有学生900人,已知高一与高二共抽取了14人,则全校学生的人数为3000.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列写法正确的是(  )
A.∅∈{0}B.∅⊆{0}C.0?∅D.∅∉∁R

查看答案和解析>>

同步练习册答案