精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的离心率为
3
3
,过右焦点F的直线l与C相交于A、B
两点,当l的斜率为1时,坐标原点O到l的距离为
2
2

(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
OP
=
OA
+
OB
成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)设F(c,0),则直线l的方程为x-y-c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.
(Ⅱ)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使
OP
=
OA
+
OB
成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.
解答: 解:(Ⅰ)设F(c,0),直线l:x-y-c=0,
由坐标原点O到l的距离为
2
2

|0-0-c|
2
=
2
2
,解得c=1,
又e=
3
3
,解得a=
3
,b=
2

(Ⅱ)由(Ⅰ)知椭圆的方程为C:
x2
3
+
y2
2
=1

设A(x1,y1)、B(x2,y2
由题意知l的斜率为一定不为0,故不妨设l:x=my+1
代入椭圆的方程中整理得(2m2+3)y2+4my-4=0,显然△>0.
由韦达定理有:y1+y2=-
4m
2m2+3
,y1y2=-
4
2m2+3
,①
假设存在点P,使
OP
=
OA
+
OB
成立,则其充要条件为:
点P的坐标为(x1+x2,y1+y2),
点P在椭圆上,即
(x1+x2)2
3
+
(y1+y2)2
2
=1.
整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.
又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、
故2x1x2+3y1y2+3=0②
将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得m2=
1
2

y1+y2=
2
2
,或y1+y2=-
2
2

x1+x2=-
4m2
2m2+3
,即P(
3
2
±
2
2

当m=
2
2
时,P(
3
2
,-
2
2
),l:x=
2
2
y+1;
当m=-
2
2
时,P(
3
2
2
2
),l:x=-
2
2
y+1.
点评:本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有两个房间无人选择且这两个房间不相邻的安排方式的总数为(  )
A、900B、1500
C、1800D、1440

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数y=-x2+2x+1,x∈(-∞,-1)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
+
1
2•
4x
n的展开式前三项中的x的系数成等差数列.
(1)求展开式中x-2的系数;
(2)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|x>2或x<-2},B={x|x≤a},
(1)若a=1,求A∩B,A∪B;
(2)若∁UA⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:
x=a+4t
y=-1-2t
(t为参数),圆C:ρ=2
2
cos(θ+
π
4
)(极轴与x轴的非负半轴重合,且单位长度相同),若直线l被圆C截得的弦长为
6
5
5
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,AB=PA=tBC(t>0)
(Ⅰ)当t=1时,求证:BD⊥PC;
(Ⅱ)若BC边上有且只有一个点Q,使得PQ⊥QD,求此时二面角A-PD-Q的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,函数f(x)=(x2+1)(x+a).
(1)若f′(-1)=0,求函数y=f(x)在[-
3
2
,1]上的极大值和极小值;
(2)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求下列函数的导数:①f(x)=ex•(cosx+sinx);②y=
x+cosx
x+sinx

(2)求下列定积分的值:(1)
2
1
1
x
+x+ex+cosx)dx;②
a
-a
a2-x2
dx,a>0.

查看答案和解析>>

同步练习册答案