精英家教网 > 高中数学 > 题目详情
7.函数f(x)=exsinx的图象在点(0,f(0))处的切线的倾斜角为45°.

分析 根据求导公式和法则求出函数的导数,再求出f′(0)的值,即为所求的倾斜角正切值.

解答 解:由题意得,f′(x)=exsinx+excosx=ex(sinx+cosx),
∴在点(0,f(0))处的切线的斜率为k=f′(0)=1,
则所求的倾斜角为45°,
故答案为:45°.

点评 本题考查了求导公式和法则的应用,以及导数的几何意义,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在算式“30-△=4×□”中的△,□分别填入两个正整数,使它们的倒数和最小,则这两个数构成的数对(△,□)应为(  )
A.(4,14)B.(6,6)C.(3,18)D.(10,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知sinα+cosα=-$\frac{1}{5}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=(${\frac{1}{2}}$)1-x,则
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
其中所有正确命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知二次函数f(x)=ax2+2ax+1在区间[-2,3]上的最大值为5,则a的值为$\frac{4}{15}$或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设⊙C1:(x-5)2+(y-3)2=9,⊙C2:x2+y2-4x+2y-9=0,则它们公切线的条数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知两定点M(0,1),N(1,2),平面内一动点P到M的距离与P到N的距离之比为$\sqrt{2}$,直线y=kx-1与点P的轨迹交于A,B两点.
(1)求点P的轨迹方程,并指出是什么图形;
(2)求实数k的取值范围;
(3)是否存在k使得$\overrightarrow{OA}$•$\overrightarrow{OB}$=11(O为坐标原点),若存在求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知角α的终边与圆x2+y2=3交于第一象限的点P(m,$\sqrt{2}$),求:
(1)tanα的值;
(2)$\frac{{2{{cos}^2}\frac{α}{2}-sinα-1}}{{\sqrt{2}sin({\frac{π}{4}+α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知2a=m,3a=n,则72a等于(  )
A.m3n2B.mn2C.m4nD.m2n3

查看答案和解析>>

同步练习册答案