精英家教网 > 高中数学 > 题目详情
19.已知一只蚂蚁在区域|x|+|y|<1的内部随机爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁爬行在该区域的内切圆外部的概率是(  )
A.1-$\frac{2}{π}$B.$\frac{2}{π}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

分析 蚂蚂蚁在区域|x|+|y|<1的内部随机爬行,构成全部事件的区域表示的集合为{(x,y)||x|+|y|<1},其面积为2,构成事件“某时刻该蚂蚁爬行在该区域的内切圆外部”所表示的面积为2-$π•(\frac{\sqrt{2}}{2})^{2}$=2-$\frac{π}{2}$,相除即得本题的概率.

解答 解:一只蚂蚁在区域|x|+|y|<1的内部随机爬行,
构成全部事件的区域表示的集合为{(x,y)||x|+|y|<1},其面积为2
构成事件“某时刻该蚂蚁爬行在该区域的内切圆外部”所表示的面积为2-$π•(\frac{\sqrt{2}}{2})^{2}$=2-$\frac{π}{2}$
则某时刻该蚂蚁爬行在该区域的内切圆外部的概率为P=$\frac{2-\frac{π}{2}}{2}$=1-$\frac{π}{4}$,
故选:C.

点评 本题主要考查几何概型,考查面积的计算,同时考查了分析问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xoy中,已知椭圆C的方程为$\frac{{x}^{2}}{8}$+y2=1,设AB是过椭圆C中心O的任意弦,l是线段AB的垂直平分线,M是l上与O不 重合的点.
(1)求以椭圆的焦点为顶点,顶点为焦点的双曲线方程;
(2)若MO=2OA,当点A在椭圆C上运动时,求点M的轨迹方程;
(3)记M是l与椭圆C的交点,若直线AB的方程为y=kx(k>0),当△AMB面积取最小值时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某同学在篮球场上进行投篮训练,先投“2分的篮”2次,每次投中的概率为$\frac{4}{5}$,每投中一次得2分,不中得0分;再投“3分的篮”1次,每次投中的概率为$\frac{2}{3}$,投中得3分,不中得0分,该同学每次投篮的结果相互独立,假设该同学要完成以上三次投篮.
(Ⅰ)求该同学恰好2次投中的概率;
(Ⅱ)求该同学所得分X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将函数f(x)=$\sqrt{3}$cos2$\frac{x}{2}$+$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$的图象上所有点的纵坐标不变,横坐标变为原来的$\frac{1}{2}$,再将所得图象向右平移$\frac{π}{3}$得到函数g(x),则函数g(x)的解析式为(  )
A.g(x)=cos$\frac{x}{2}$B.g(x)=-sin2xC.g(x)=sin(2x-$\frac{π}{3}$)D.g(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知某几何体的三视图如图,其中正视图中半圆直径为4,则该几何体的体积为64-4π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z:满足(1+$\sqrt{3}$i)z=1+i,则|z|等于(  )
A.$\frac{\sqrt{2}}{2}$B.-$\sqrt{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设I是直角△ABC的内心,其中AB=3,BC=4,CA=5,若$\overrightarrow{AI}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=(  )
A.$\frac{7}{12}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=ax2+bx,g(x)=lnx,其中a,b为常数.
(1)若a=0,且f(x)与g(x)相切,求b的值;
(2)设函数h(x)=f(x)-g(x).
①当b=0时,若h(x)≥0恒成立,求实数a的取值范围.
②若a+b=0,试讨论h(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2-(a+2)x+lnx.
(Ⅰ)当a=0时,求函数y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在区间(1,e)的有零点,求正数a的取值范围;
(Ⅲ)求证不等式${e^{\sum_{i=1}^n{\frac{i+1}{i^2}}}}>n$对任意的正整数n都成立(其中e是自然对数的底数).

查看答案和解析>>

同步练习册答案