精英家教网 > 高中数学 > 题目详情
4.已知复数z:满足(1+$\sqrt{3}$i)z=1+i,则|z|等于(  )
A.$\frac{\sqrt{2}}{2}$B.-$\sqrt{2}$C.$\sqrt{2}$D.2

分析 直接利用复数方程两边求模,然后求解即可.

解答 解:复数z:满足(1+$\sqrt{3}$i)z=1+i,
可得:|(1+$\sqrt{3}$i)||z|=|1+i|,
即2|z|=$\sqrt{2}$,解得|z|=$\frac{\sqrt{2}}{2}$.
故选:A.

点评 本题考查复数的模的求法,考查计算能力,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足:a1=a2=1,且an+2-an=2n(n∈N*),设bn=3an
(1)求数列{an}的通项公式;
(2)在数列{bn}中,是否存在连续三项构成等差数列?若存在,求出所有符合条件的项,若不存在,请说明理由;
(3)试证明:在数列{bn}中,一定存在正整数k、l(1<k<l),使得b1、bk、bl构成等差数列,并求出k、l之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影与$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影相等,则|$\overrightarrow{a}$-$\overrightarrow{b}$|等于(  )
A.$\sqrt{2}$B.$\sqrt{10}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把A、B、C、D四件玩具分给三个小朋友,每位小朋友至少分到一件玩具,且A、B两件玩具不能分给同一个人,则不同的分法有(  )
A.36种B.30种C.24种D.18种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知一只蚂蚁在区域|x|+|y|<1的内部随机爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁爬行在该区域的内切圆外部的概率是(  )
A.1-$\frac{2}{π}$B.$\frac{2}{π}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=log2x.在区间[$\frac{1}{2}$,2]上随机取一x0,则使得f(x0)≥0的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在边长为1的正方形ABCD中,以A为起点,其余顶点为终点的向量分别为$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$;以C为起点,其余顶点为终点的向量分别为$\overrightarrow{{c}_{1}}$,$\overrightarrow{{c}_{2}}$,$\overrightarrow{{c}_{3}}$.若m为($\overrightarrow{{a}_{i}}$+$\overline{{a}_{j}}$)•($\overrightarrow{{c}_{s}}$+$\overrightarrow{{c}_{t}}$)的最小值,其中{i,j}⊆{1,2,3},{s,t}⊆{1,2,3},则m=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求证:(${C}_{n}^{0}$)2+(${C}_{n}^{1}$)2+…+(${C}_{n}^{n}$)2=${C}_{2n}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面a及空间中的任意一条直线l那么在平面a内一定存在直线b使得(  )
A.l∥bB.l与b相交C.l与b是异面直线D.l⊥b

查看答案和解析>>

同步练习册答案